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Abstract

Aims: To develop and implement an automated virtual slide screening system that distinguishes normal histological
findings and several tissue — based crude (texture — based) diagnoses.

Theoretical considerations: Virtual slide technology has to handle and transfer images of GB Bytes in size. The
performance of tissue based diagnosis can be separated into a) a sampling procedure to allocate the slide area containing
the most significant diagnostic information, and b) the evaluation of the diagnosis obtained from the information present
in the selected area. Nyquist's theorem that is broadly applied in acoustics, can also serve for quality assurance in image
information analysis, especially to preset the accuracy of sampling. Texture — based diagnosis can be performed with
recursive formulas that do not require a detailed segmentation procedure. The obtained results will then be transferred
into a "self-learning” discrimination system that adjusts itself to changes of image parameters such as brightness, shading,
or contrast.

Methods: Non-overlapping compartments of the original virtual slide (image) will be chosen at random and according
to Nyquist's theorem (predefined error-rate). The compartments will be standardized by local filter operations, and are
subject for texture analysis. The texture analysis is performed on the basis of a recursive formula that computes the
median gray value and the local noise distribution. The computations will be performed at different magnifications that
are adjusted to the most frequently used objectives (*2, *4.5, *10, *20, *40). The obtained data are statistically analyzed
in a hierarchical sequence, and in relation to the clinical significance of the diagnosis.

Results: The system has been tested with a total of 896 lung cancer cases that include the diagnoses groups: cohort (1)
normal lung — cancer; cancer subdivided: cohort (2) small cell lung cancer — non small cell lung cancer; non small cell lung
cancer subdivided: cohort (3) squamous cell carcinoma — adenocarcinoma — large cell carcinoma. The system can classify
all diagnoses of the cohorts (1) and (2) correctly in 100%, those of cohort (3) in more than 95%. The percentage of the
selected area can be limited to only 10% of the original image without any increased error rate.

Conclusion: The developed system is a fast and reliable procedure to fulfill all requirements for an automated "pre-
screening” of virtual slides in lung pathology.
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Background

Tissue - based diagnosis procedures comprise a broad
spectrum of techniques. These include, for example, con-
ventional light microscopy images (vessels, cells, nuclei,
membranes, extra-cellular substances, etc), visualization
of macromolecules and their functions (antibodies, recep-
tors, glycoproteins, etc.), detection of gene arrangements
(in situ hybridization), of cytogenetic parameters (point
mutations, amplifications, deletions, etc), or live features
(cellular movements, etc.) [1-3]. The diagnosis process
itself can be distinguished into two different analysis
aims: a) the causal conditions and interactions, b) the
most effective and appropriate treatment to help the
involved patient.

Modern technology permits the digitalization of complete
glass slides by so -called slide scanners in a fast and repro-
ducible manner. The obtained image is called a virtual
slide, its viewing and analyzing virtual microscopy.

The causative analysis requires distinct theoretical mod-
els, is usually embedded in fixed margin conditions, and
will not be discussed here furthermore.

A "correct" diagnosis to be used for patients' care pos-
sesses the closest association with the most appropriate
(and effective) treatment procedure, which can be meas-
ured at different stages (times): Prior to the treatment it is
called "classic" diagnosis, during the treatment "response”
diagnosis, in relation to the outcome of the patient "prog-
nosis" diagnosis, and prior to the outbreak of a disease
"risk" diagnosis. The involved biological structures and
functions of tissue differ within this development: a "risk"
diagnosis is mainly based upon gene arrangements (can-
cer risk genes), the classical diagnosis mainly upon tissue
textures, "response" and "prognosis" diagnosis upon
receptors, macromolecules, and gene abnormalities. In a
survey according to [4,5] the different diagnosis types and
the corresponding tissue examinations are listed in table
1.

Within the diagnosis procedures certain "ranks" can be
distinguished that are related to performance - associated
features such as diagnosis "speed", "costs", or human
resources (experiences). With exception of the "risk" diag-
nosis the "classic" diagnosis is a prerequisite for establish-
ing "prognosis" or "response" diagnoses. Based upon
these parameters, "conventional" tissue preparation pro-
cedures (images obtained from conventionally (HE, PAS,
Giemsa, etc.) stained glass slides) form the "gold stand-
ard", and are by far the most applied tissue-based diagno-
sis procedures.

It is, therefore, of theoretical and practical interest, to fur-
thermore analyze the specific conditions of "classic" diag-
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nosis procedure, and to examine the potential benefits of
an automated information recognition system associated
with conventionally stained glass slides.

Theoretical considerations

Information analysis of histological slides

The information content of light microscopy images
obtained from conventionally stained glass slides is com-
posed of two main compartments, namely a) object -
associated information, and b) non-object associated
information. The detection and classification of object -
associated information requires a "division" of the image
into an object - related space (compartments), and a non-
object - related space (background) [6-10]. The objects
searched for are usually "abnormal" events (nuclei, cells,
external material, etc.), i.e. objects which display unusual
features or which are not present in the analyzed tissue
under normal (healthy) circumstances. For example, they
comprise cells with alterations in size or internal struc-
tures (virus infection), cancer cells, inflammatory cells, or
external organisms (bacteria, parasites). The majority of
"classic" diagnoses is based upon the detection and cor-
rect identification of these "objects": A correct cancer diag-
nosis requires the correct and error - free proof of cancer
cells, that of an active tuberculosis the visualization of
tuberculosis bacilli! The basic scheme of object-related
diagnosis procedures is given in Figure 1. The first step is
to divide the original image into an object and a back-
ground image. The second step analyses the objects in
relation to their features (cellular and nuclear size, stain-
ing intensity, form factor, etc). Of major significance is the
procedure of the object — background separation (thresh-
olding), which can be object dependent or not [5,11].

Having identified the objects, their spatial arrangement
can possess diagnostic information too, for example in
specific growth pattern (granulomas, adenoid growth pat-
tern, epidermoid cellular arrangements, etc.). These fea-
tures can be analyzed by various techniques, for example
by syntactic structure analysis [12-19]. A related graph is
constructed which represents the gravity centers of the
objects (nodes), a neighborhood relationship (edges),
and node/edge related attributes (distances, sizes, inte-
grated optical density, etc.). The procedure allows the def-
inition of new (higher order) objects, if statistical
associations (or repeated geometrical figures) can be
obtained [4,13,17,18,20].

In addition to the described procedures, non-object ori-
ented information can be extracted from a histological
image. The underlying representation of image informa-
tion is usually called texture, and the procedure texture
analysis [10,18,21-23]. A texture is a gray value distribu-
tion which might possess invariants in image transforma-
tion (symmetries). A texture can be analyzed by an
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Object related diagnosis

Detection of the objects
V (ants, leaves)

Determination of
quantitative & qualitative
features

V (size, arms, feet)

Classification of the
detected objects

V (musicians)
Diagnosis (music band)

Figure |

Scheme of diagnosis algorithm in object — related
diagnosis. Explanation: The original image is divided into a
background and an object-related space (right upper and left
lower corner). Within the object space object have to be
identified by known general object features (ants, leaves).
The object features will then be measured and classified
according to the feature data set. The complete arrangement
will provide the diagnosis.

autoregressive procedure that computes the gray values of
pixels in relation to those of their neighbors. Similar, the
same procedure can be applied to create images with arti-
ficial textures. A reproducible and invertible texture anal-
ysis results in a set of 5 — 6 parameters, and is, therefore,
an appropriate tool to compute "similarities" between dif-
ferent images. It can be also used to transform an image
into a two dimensional matrix and to compare images
with known textures to the diagnostic image [10]. An
example of the technique is given in Figure 2.

The application of both object and texture associated
diagnosis procedures results in a data set that represents
the image as a whole. Thus, these algorithms seem to be
useful to analyze virtual slides which represent complete
digitized glass slides. However, the digitalization of a
complete glass slide creates images measuring several GB
in size [1,3,5,24]. Therefore, the question arises whether
the diagnosis information content of the complete image
can be extracted from included image compartments, and,
if yes, what is the obtained accuracy.

Application of Nyquist's theorem on object oriented
information

The image obtained from digitalization of a complete
glass slide is called "virtual slide", and commonly meas-
ures several GB in size [1,3,5]. It is technically computed
by acquisition of several image compartments "patched
together" (patch work procedure) [1,5]. The acquisition
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time measures several minutes or hours, dependent upon
the highest wanted resolution. Once such a virtual slide
has been acquired, it may be used for numerous purposes
including image quantification, storage and retrieval in
routine diagnostic work, steering source for automated tis-
sue sampling in tissue micro arrays (TMA), continuous
education, etc. The handling of such large data matrices,
however, is not easy, and requires fast communicative
connections and sophisticated programming. In addition
to fast line connections and smart computer solutions,
appropriate use of sampling procedures might be useful,
might save time and non-necessary efforts. One idea is
based upon the principle of tissue - based diagnosis:
Once the necessary information needed for diagnosis
statement (and confirmation) has been detected, no fur-
ther efforts are needed, i.e., the diagnostic procedure will
be terminated immediately. For example, if tumor cells
can be clearly identified in one or several image compart-
ments, there is no need to further analyze the still missing
compartments (or the whole image), as this analysis will
not affect the diagnosis anymore. Of course, this concept
has to be associated with the underlying clinical tasks. For
example, the algorithm to clarify a tumor diagnosis can be
terminated in a biopsy by identifying the cancer; it has to
be continued if resection boundaries have to be investi-
gated too in a surgical specimen.

The decomposition of an image into "diagnosis compart-
ments" and their analysis will, therefore, improve the effi-
ciency of a diagnostic procedure and further allow the
calculation of the "risk" of missing an object with diag-
nostic significance. The risk calculation for object - asso-
ciated diagnosis depends upon the object number and
their size in relation to the sizes of the chosen compart-
ments, as well as upon their sizes and number in respect
to the size of the original image. If we consider the proba-
bility of an object diagnosis as "original diagnosis fre-
quency" and the compartment division of the original
image as "digitalization", we can apply Nyquist's theorem
for an optimal adjustment of compartment size to the
image. According to Nyquist's theorem the signal to be
reconstructed must be sampled with a frequency at least
two times greater than that to be reconstructed. In other
words, the number of pixels required to classify an object
should amount two (in a two dimensional space four)
times more than the lower limit of recognition. Similar,
the size of the "sampling space", i.e. the diagnosis image
compartment must amount four times more than the
pixel size of the objects divided by the relative frequency
of objects present in the complete image. This assumption
is very useful for analysis of histological images, as these
images usually contain connected tissue compartments,
i.e., numerous cancer cells or bacteria, if correctly taken by
the clinician.
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Textures derived from images

original image, red color derived texture Local filter (thinning)

Figure 2

Original image and derived texture based upon an
auto-regressive algorithm. Explanation: The auto-regres-
sion texture analysis yields images of repeated gray value
"shadows" that do no longer permit a recognition of the orig-
inal image in contrast to the application of some local image
transformations such as "thinning".

Assuming that 10% of the original image (virtual slide)
contain diagnostic significant objects, the size of an object
measures 100 um?, and an objective of *20 is required to
identify the object one would obtain a sample size of 400
um2, which should be repeated N = 1,.2.. 10 times using
randomly selected non overlapping samples. If one of the
samples contains an object, the procedure can be termi-
nated. An overview of sample size useful for frequently
diagnosed histological objects is given in table 2.

A survey of sampling procedures

The object - oriented information-extraction requires the
identification of objects. The necessary algorithms can be
applied to a histological image a) with or b) without addi-
tional spatial - associated predefined knowledge. This
statement reflects to a random or non-random selection
(sampling) of image compartments to be analyzed
[5,11,25]. Basically, five different sampling procedures
can be distinguished in the analysis of histological slides.
They reflect to a) the aim of the image analysis, for exam-
ple to evaluate the diagnosis information with the highest
efficiency, b) to biological features or expected object
properties, for example environment independent exhibi-
tion of receptors (visualization of macromolecules).

Random sampling does not require predefined informa-
tion input, and is usually applied for measuring object
properties, and the spatial distribution of objects within a
tissue. Its counterpart is called stratified sampling, a pro-
cedure which either stops when identifying a wanted
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object (cancer cell), or preferable takes place in certain
image areas (for example in close neighborhood to a ves-
sel, at image compartments that display certain specific
features, etc.). Both methods, i.e.,, random sampling or
stratified sampling are object - oriented. Thus, they can be
performed with a local independent (passive sampling) or
local dependent (active sampling) object identification
strategy. Active sampling procedures are often necessary in
images that visualize macro-molecule expression due to
image features that are induced by laboratory conditions.

Finally, quite often "unknown" objects are identified that
are difficult to be distinguished from artifacts. They are
rare in frequency; might, however, just be common
objects which express uncommon features (artifacts). The
correct classification of these objects requires an event —
and space - related identification of known surrounding
objects, and is called functional sampling [5]. The appli-
cation of stratified either active or passive sampling is
most promising for automated extraction of diagnosis —
oriented information from a histological image.

Texture oriented image information

In contrast to object - related information, textures can be
derived without the division of an image into a fore-
ground (object space) and into a background. Unfortu-
nately, an exact definition of a texture does not exist to our
knowledge, neither in general nor in the context of image
analysis. Most of the authors use the term "texture" for a
general gray value function which can be derived from
several repeating and "easy to see" basic image patterns.
For example, according to Tamura et al. (1978) a texture
can be defined by coarsness, contrast, directionality, line-
likeness, regularity, and roughness [23]. Another, more
practical and promising approach has been proposed by
Voss et al. [10]. The authors use an auto-regression func-
tion derived from the analysis of time sequences in order
to derive or to create textures. A six dimensional stochastic
differential equation describes the correlation of random
values (gray values) which are modified by associated
coefficients. Figure 3 displays the original image, best fit-
ting randomly computed objects and the calculated tex-
ture of a histological image.

The algorithm is basically dependent upon the image size;
it becomes, however, quite independent for images of >
2,500 pixels in size (50 * 50 pixels).

The texture synthesis using this auto-regression model
and the corresponding derivation of textures from an
image to be diagnosed permits a comparison of textures,
and the computation of texture similarities. This idea
might be appropriate to determine useful diagnostic
information based upon image textures.
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Table I: Contribution of different tissue examinations to establishing certain therapy-associated information (diagnosis)

Diagnosis type Type of tissue analysis
Conventional (HE, tissue Molecule expression Receptor — binding Genes
textures) (antibodies)
Classic +++ ++ + -
Prognosis ++ +++ +++ +
Response + ++ +++ *)
Risk - + ++ +++

(*) with exception of potential germ cell gene therapy vectors
+++ significant, ++ moderate, + minor, - no contribution.

Naturally, the idea of image analysis by auto-regression
algorithms is not limited to the original image, and can be
applied to images that have undergone certain transfor-
mations of the original image too, such as linear and non-
linear local filters (linear shift invariance filtering,
Laplace, gradient filtering, etc.).

Reproducible texture analysis does not require an identifi-
cation of objects, and is, therefore, not associated with
object - related information. It is a second, independent
approach to extract diagnosis relevant information from a
histological image. The approach can be applied to distin-
guishing between several diagnoses, and is, in addition,
able to find new diagnosis items by statistical analysis of
the computed features.

Image trials — methods

To prove the discussed theorems, the algorithm for auto-
mated extraction of diagnosis - oriented information
from conventionally stained histological images was cho-
sen as follows: Still color images were acquired from HE -
stained glass slides with a digital camera resulting in an
image size 764 * 572 pixels * 8 bits. Non overlapping tex-
ture analysis compartments measuring 80 * 50 pixels were
randomly defined. Their number was adjusted to the per-
centage of image space to be analyzed (in this trial 5%).
The total image and the image compartments underwent

a non-linear filtering (thinning, gradient computation). A
linear auto-regression function served for texture analysis
of the complete original and transformed image and their
randomly selected compartments. For comparison, a cor-
responding set of artificially created textures of identical
image sizes was computed. The total volume fraction Vv
of selected compartments was set 5%. The artificially cre-
ated textures were then compared with the set of textures
obtained from images with known diagnoses, and served
as classification set. The same procedure was applied to
images with unknown diagnoses. The derived textures
were compared with those from the classification set, and
served for diagnosis classification. The scheme of the
applied algorithm is shown in Figure 4.

Material and results

The trial comprises a total of 996 histological lung images,
comprising a training set of 88 cases, and a test set of 808
images. The diagnoses included 349 normal (tumor -
free) lung parenchyma, and 647 images showing squa-
mous cell carcinoma, adenocarcinoma, large cell anaplas-
tic carcinoma, and small cell lung cancer. The images were
acquired at the microscope objective settings *2.5, *4,
*10, *20, *40 which are equivalent to the magnifications
(*40, *60, *120, *240, *600). The cases of the learning
set were classified using a non-hierarchic discriminate
analysis at different classification priorities: The classifica-

Table 2: Image volume in relation to objective magnification and optical resolution

Objective magnification 4% 10* 20% 40%*
Numerical aperture 0.2 0.45 0.5 0.75
Optical resolution (um) 1.7 0.75 0.67 0.45
Pixel number* 11765%14704 26667%33333 29851%37313 44444%55556
Image size 2.08 GB Il GB 13 GB 30GB
Object size | -4 MB | MB 5MB 12 MB
Sample size** 8-32MB 8 MB 40 MB 120 MB
Nuclei - - * *

Cells - *) * *
Vessels * * *) -
Sample Number*#* 6-125 1375 325 25

* Assuming a slide area (20 * 25 mm); ** Assuming Vv of objects = 0.5; Nyquist's theorem; *** assuming Vv of samples = 0.1
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Figure 3

Orriginal histological image, derived standardized and trans-
formed images, as well as best fitting textures and randomly
created objects.

tion priorities reflect to the clinical significance of the
diagnosis: in a first step normal lung parenchyma images
were separate from tumor images. The second step distin-
guished between small cell lung cancer and the other three
(non-small cell lung carcinoma cell types); the last step in
between the three carcinoma cell types (squamous -
adeno - large cell).

The texture analysis of a complete image lasted for about
50 ms using a commercially available PC with a tact fre-
quency of 1.2 GB and 512 MB memory size. The self writ-
ten programs are based upon the visual BASIC - like DIAS
language (DIAS, University Jena).

No false positive or negative cases were obtained in differ-
entiating the tumor images from the non-tumor images,
the classification accuracy between the different tumor
cell types ranged between 96 — 100%. The same result was
observed for the other discrimination cohorts. The dis-
crimination accuracy depends upon the chosen magnifi-
cation: low to moderate magnifications (*60 - *120)
displayed the most accurate differentiation between
tumor - non- tumor images, in contrast to separate small
cell carcinomas from squamous cell carcinomas (*240 -
*600). Texture analysis of filtered images was superior to
that of the original images.

Discussion and perspectives

Human performance of tissue — based diagnosis is a quite
complex and not really understood procedure. Naturally,
image features are recognized, classified, and discrimi-
nated in combination with external, non-image data, such
as age and sex of the patient. In earlier times, numerous
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approaches have been undertaken to identify and meas-
ure objects and to correlate the obtained features with the
tissue-based diagnosis [3,6,12,13,17,25,26]. The auto-
mated, feature - related tumor classification was the cen-
tral aim. The analyzed features included size, shape,
chromogen distribution, nucleoli, or more sophisticated
second order statistics data [3]. All these trials failed in so
far as they did not reach the level of clinical routinely
application to our knowledge. More promising was an
approach to correlate tissue structures with diagnosis
information based upon syntactic structure analysis
[15,17,18,21]. This approach revealed some clinical sig-
nificance, especially in the application of "prognosis"
diagnoses [5,21,26].

The development of computer technology offers new per-
spectives in information extraction of histological images.
The prerequisites to develop a successful and accurate sys-
tem are the analysis of the diagnosis algorithms. The
understanding of the "diagnostic procedure" has under-
gone significant changes too [4,5,27]. Contemporary with
the implementation of molecular pathology/genetic
methods into routine tissue — based diagnosis our under-
standing of the diagnostic process itself has altered. Mod-
ern pathologists distinguish at least four different types of
tissue based diagnoses, which are listed in table 1. As
shown in table 1 there is a close association between the
technical procedures to be applied and the diagnostic aim.
The basic difference between the classical analysis of a his-
tological slide (for example conventional stained slide)
and that obtained by application of molecular pathology
techniques is based in the visualization of the contained
information: The "information extraction" of convention-
ally stained slides has primarily to recognize "patterns" in
contrast to that of molecular pathology data which usu-
ally express a "binary information": Antigens, macromol-
ecules, abnormal genes, etc. are either present (expressed)
or not.: The visualization of a potential presence of an
antigen (antibody) results in a certain color (brown, red)
or not, which is correspondent to a binary decision (yes,
no).

In addition to the contribution of extra-image features the
diagnosis process based upon conventionally stained
slides can be separated into two basic procedures, namely
a) object dependent, and b) texture dependent.

The object - dependent diagnosis algorithm has to I)
divide the image into an object space and a background,
IT) search for certain objects, III) characterize the objects,
and IV) derive the diagnosis - relevant information. Tech-
nically speaking, difficulties arise in the definition of the
"object space", and the efficient manner to find the
objects, i.e., the sampling procedure. As shown in the
EAMUS system [8], active stratified sampling is an appro-
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algorithm of image classification

‘ generation of artificial images ‘

original image

standardization

texture analysis
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comparison with artificial images

selection of best images

statistics (classification)

Figure 4

general scheme of diagnosis algorithm based upon
texture analysis only. Explanation: The algorithm to
extract image information starts with a standardization of the
image followed by recursive texture analysis and comparison
of artificial texture images with those of the training set. The
obtained parameters are fed into classification procedures
based upon discriminate analysis. This algorithm does not
require segmentation procedures.

priate method to identify and measure objects present in
immunohistochemically stained images. However, the
transformation of object related information (object fea-
tures) into a "conventional diagnosis" cannot be solved in
a unique manner according to all the trials that have been
undertaken in the past [5].

Texture dependent analysis of histological images has
been undertaken by use of graph theory approaches
[10,19,24]. In principle, these algorithms define objects as
vertices (nodes), use a predefined neighborhood condi-
tion (Voronoi, O'Callaghan, or limited distance relation-
ship) to construct the edges, and the features of the
vertices (usually nuclei) and their attributes [2,17,18].
These approaches have been reported to be successful for
"classic" and "prognosis" diagnosis in lung and breast
cancer [2,18]. Obviously, they require similar prerequi-
sites as object dependent diagnosis algorithms, namely
the segmentation of the original image into a background
and into the object space.

Herein a new approach is presented, a texture based diag-
nosis algorithm that does not require a segmentation
algorithm. The principle idea is the definition and appli-
cation of a reproducible texture algorithm that is derived
from the analysis of time series. This autoregressive model
can successfully be applied to create artificial textures, and
to reproducible identify image textures [10].

http://www.diagnosticpathology.org/content/1/1/10

The autoregressive model creates a set of artificial textures
and identifies textures of histological images with known
diagnosis. Similarly, textures of images with unknown
diagnosis are identified too, and compared with the artifi-
cial textures, that display the best relation to the textures
of images with known diagnosis. The results are promis-
ing and convincing: all included cases could be diagnosed
without false positive or negative classification. The algo-
rithm requires a minimum image size of 50 x 50 pixels
only; i.e., it is useful for image compartments too.

The random selection of non - overlapping image com-
partments permits an accurate screening of otherwise dif-
ficult to handle large sized images (virtual slides). Thus,
texture analysis is a promising tool to screen convention-
ally stained histological slides, and to select those slides
for further detailed human analysis that contain diagnosis
useful information.
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