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Abstract

Background: Fine-needle aspiration cytology (FNAC) is a basic diagnostic tool for thyroid nodules. However, 15–
30% of nodules are cytologically indeterminate. Midkine (MK), a pleiotropic growth factor, is often upregulated in
patients with cancers. This study aimed to evaluate the role of MK and its ratios in fine-needle aspirates (FNA) for
predicting thyroid malignancy.

Methods: This retrospective study included patients with thyroid nodules who underwent preoperative FNA and/or
thyroidectomy between April 2017 and September 2017. MK levels in FNA washout were measured by enzyme-
linked immunosorbent assay, and thyroglobulin (TG) and free thyroxine (FT4) levels in FNA washout were measured
by chemiluminescent immunometric assays.

Results: A total of 217 patients with 242 nodules were included in this study. The concentrations of TG, FT4, MK/
TG, MK/FT4, and FT4/MK were significantly different between papillary thyroid carcinomas and benign thyroid
nodules. Both MK/TG and MK/FT4 ratios were positively correlated with maximum tumor diameter, extrathyroidal
extension, and T and N stages. The area under the curve for MK/TG was 0.719 with a cutoff value of 55.57 ng/mg,
while the area under the curve for MK/FT4 was 0.677 with a cutoff value of 0.11 μg/pmol. FNAC in combination
with MK/FT4 had a higher sensitivity (95% vs. 91%) and accuracy (96% vs. 92%) than FNAC alone for cytologically
indeterminate specimens, those of unknown significance, or those suspected of malignancy.

Conclusions: MK/FT4 and MK/TG may have diagnostic utility for evaluation of papillary thyroid carcinomas,
particularly for cytologically indeterminate thyroid nodules.
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Background
The incidence of thyroid nodules is high, with a reported
prevalence of 19 to 67% in the general population [1].
Neck ultrasound (US) has well-known utility for evaluat-
ing thyroid nodules and is recommended as a first-line
imaging approach to determine the need for further
cytological examination [2]. US-guided fine-needle aspir-
ation cytology (FNAC) is a minimally invasive procedure
that can provide valuable clinical and pathological infor-
mation through evaluation of thyroid nodule aspirates
using the Bethesda classification system [3]. For most
patients, the combination of US and FNAC is the opti-
mal diagnostic approach. However, the reported propor-
tion of specimens determined to be cytologically
indeterminate using FNAC ranges from 15 to 30% [4].
Therefore, additional morphological and functional
methods to complement these evaluations should be
identified. Researchers have focused on US elastography
and biomarkers, such as BRAF, RAS, RET/PTC,
galactine-3, HBME-1, and cytokeratin 19, with the hope
of making up for the defects of the existing technology
[2, 5–7]. Since the measurement of thyroglobulin (TG)
in FNA washout was first proposed as a supplementary
method to FNAC for the detection of cervical lymph
nodes metastases in 1992, growing numbers of studies
have focused on the diagnostic performance of markers
in FNA washout in thyroid cancer [8–11]. Despite the
contribution made by these methods in aiding the diag-
nosis of uncertain nodules, they have not completely
solved this problem. More reliable biomarkers need to
be further explored and discovered, which will help clin-
ical decision-making.
Midkine (MK), a 13-kDa pleiotropic growth factor, is

often upregulated in patients with cancer [3, 12–15]. Up-
regulation of MK has been shown to be closely associ-
ated with several oncogenic characteristics, including
increased cell proliferation, invasion, migration, and
angiogenesis. Expression of MK, which is downstream of
BRAF, is highly related to BRAF mutations [13]. In
addition, higher expression of MK in patients with thy-
roid cancer has been associated with extrathyroidal inva-
sion, lymph node metastases, and advanced tumor stage
[2, 16]. Unfortunately, given its widespread expression in
many cancer types, serum MK levels have relatively low
diagnostic specificity for identifying thyroid cancer; how-
ever, determination of MK expression within nodules
has been shown to have some diagnostic promise [4, 16].
Several studies have determined MK concentrations in
FNA washout samples of thyroid nodules [4]. The MK-
to-TG ratio (MK/TG) has been shown to have better
diagnostic performance than the MK level alone [4];
however, the TG concentration in thyroid nodules is
generally beyond the range of clinical detection (> 500
ng/mL), which can lead to an inaccurate or incalculable

ratio. Since free thyroxine (FT4) is thyroid tissue-specific
and expressed at the same order of magnitude as MK
[17], we propose the use of the MK-to-FT4 ratio (MK/
FT4) in this study, aiming to facilitating the diagnostic
utility of MK concentrations.
In this study, we aimed to determine the diagnostic ac-

curacy of MK concentrations, especially MK/FT4 and
MK/TG, obtained from FNA in predicting malignancy in
patients with thyroid nodules. We also aimed to examine
the relationship of these variables with clinicopathologic
characteristics, American College of Radiology Thyroid
Imaging Reporting and Data System (ACR TI-RADS)
categorization, and Bethesda categorization of FNAs.

Materials and methods
Study population
Our subjects (n = 217) were consecutive patients with
thyroid nodules who underwent preoperative FNA and/
or thyroidectomy at the Division of Thyroid Surgery at
China-Japan Union Hospital of Jilin University between
April 2017 and September 2017. Patients were excluded
if they had other thyroid diseases (e.g., Graves’ hyperthy-
roidism or Hashimoto’s thyroiditis), other malignant tu-
mors, or liver, kidney, or nervous system diseases.
Sequential thyroid nodule sample evaluation steps are
shown in Fig. 1.

Instruments and methods
Sonography
Thyroid US was performed preoperatively by two radiol-
ogists using an 8- to 13-MHz linear array probe (S50
PRO, Sonoscape, Shenzhen, China). Sonographic fea-
tures considered suspicious for malignancy are presented
in Additional file 1. Using thyroid US, nodules were clas-
sified from TR1 through TR5 based on the ACR TI-
RADS.

Cytological examination
All preoperative FNAs were performed by two experi-
enced surgeons (> 5 years of experience) under US guid-
ance with local anesthesia. For each nodule, one to two
FNA samples were obtained using a 22-G needle

Fig. 1 Flowchart of thyroid nodule evaluations. FNA, fine-needle
aspiration; PTC, papillary thyroid carcinoma
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without applying suction. After the content of each nee-
dle was expelled onto a microscope slide for conven-
tional cytology, the needle was rinsed with 600 μL of
phosphate-buffered solution. The washout was then ali-
quoted and stored immediately at − 80 °C until assays
were performed. Slides were stained using hematoxylin
and eosin and evaluated by pathologists blinded to the
original classification. Cytological evaluations were clas-
sified into categories I through VI using the Bethesda
System for Reporting Thyroid Cytopathology [18] as fol-
lows: I, non-diagnostic or unsatisfactory; II, benign; III,
atypia of undetermined significance or follicular lesion
of undetermined significance; IV, follicular neoplasm or
suspicious for a follicular neoplasm; V, suspicious for
malignancy; or VI, malignancy.

MK measurement
FNA washout samples were transported to the labora-
tory in a temperature-controlled system. MK measure-
ments were performed using a human MK ELISA Kit
(E-EL-H2297c, Elabscience, Houston, TX) with modifi-
cations. The detection range of this kit has been shown
to be 0.156–10 ng/mL, with normal serum MK levels
generally less than 0.5 ng/mL [19]. This kit can detect
natural or recombinant human MK without obvious
cross-reactivity with other related proteins and with in-
plate and inter-plate coefficients of variation of < 10%.

TG and FT4 measurements
TG and FT4 levels were measured in FNAs. TG and
FT4 were detected by chemiluminescent immunometric
assays (cat. Nos. 06445896 for TG and 07976836 for
FT4, Roche Diagnostics GmbH, Mannheim, Germany).
For TG detection, the washout was diluted 10:1000.

Histopathology
Thyroid nodules corresponding to the FNA underwent
diagnostic evaluations of surgical histopathology by an
expert panel blinded to all MK data. All nodules were
classified as either benign thyroid nodules or papillary
thyroid carcinomas (PTC)s.

Statistical analysis
Data were analyzed using SPSS 22.0 (IBM, Armonk, NY)
and presented as mean ± standard deviation, median
(range), or number (percentage). Kruskal–Wallis and
Mann–Whitney U tests were used for multiple compari-
sons. Spearman bivariate correlations were made among
the variables and clinicopathological characteristics.
Multivariate linear regression analysis was used to screen
for independent significant risk factors. Receiver operat-
ing characteristic (ROC) curves were used to calculate
areas under the ROC curve (AUCs) and to evaluate

diagnostic values. P-values less than 0.05 were consid-
ered to indicate statistical significance.

Results
Baseline demographic and clinical characteristics of study
cohort
As shown in Table 1, a total of 217 patients (43 males
and 174 females) with 242 nodules (23 benign thyroid
nodules and 150 PTCs) determined by histopathological
analysis were evaluated. Most nodules were categorized
as either FNA II (28.1%) or FNA VI (58.3%) on cytologic
analysis. Nodules were classified into the five ACR TI-
RADS categories (TR1-TR5) as follows: 3.6, 4.1, 5.9,
29.5, and 56.8%, respectively.

MK ratios in benign and malignant thyroid nodules
We first compared MK, FT4, and TG concentrations
and MK ratios (MK/TG, MK/FT4, and FT4/MK) be-
tween nodules determined to be benign and PTCs by
histopathological analysis. As illustrated in Table 2 and
Fig. 2, five of the indicators (with the exception of MK
level), had significantly different values between benign
and malignant nodules (P < 0.05). MK/TG was signifi-
cantly higher in PTCs (80.59 ng/mg) than benign

Table 1 Baseline demographic and clinical characteristics of
study cohort

Demographic and clinical characteristics Total

Number of patients 217

Gender

Male 43 (19.8%)

Female 174 (80.2%)

Age (years)

Children (≤18) 0 (0%)

Youth (19–44) 100 (46.1%)

Middle age (45–59) 103 (47.5%)

Elderly (≥60) 14 (6.5%)

Number of nodules 242

Histopathology

Absent 69 (28.5%)

Benign 23 (9.5%)

PTC 150 (62.0%)
aFNA

I 8 (3.3%)

II 68 (28.1%)

III 4 (1.7%)

IV 0 (0%)

V 21 (8.7%)

VI 141 (58.3%)
a FNA fine-needle aspiration
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nodules (20.16 ng/mg) (P = 0.001). Similarly, MK/FT4
was significantly higher in PTCs (0.09 μg/pmol) than be-
nign nodules (0.03 μg/pmol) (P = 0.006). Finally, TG,
FT4 and FT4/MK were significantly higher in benign
nodules than PTCs. These findings suggested that MK
ratios may have utility in distinguishing benign nodules
from PTCs.

Relationship between MK ratios and clinicopathological
features
We further explored the associations of MK, TG, FT4,
and MK ratios with several clinicopathological features
with prognostic implications, including the number of
nodules, maximum tumor diameter (MTD), extrathyroidal
extension (ETE), and TNM staging. As shown in Table 3,
MK expression significantly differed according to MTD
(P = 0.000), T stage (P = 0.008), and N stage (P = 0.006).
TG and FT4 levels, however, only differed according to
ETE. Both MK/TG and MK/FT4 increased with MTD
(P = 0.009 and 0.001, respectively) and significantly dif-
fered according to ETE (P = 0.001 and 0.003, respectively).
MK/TG and MK/FT4 increased with T stage (both P =
0.002). However, only MK/FT4 increased with N stage
(P = 0.025). There were also significant differences for
FT4/MK in MTD (P = 0.001), ETE (P = 0.003), T stage

(P = 0.002), and N stage (P = 0.025). Both MK/TG and
MK/FT4 were positively correlated with MTD, ETE, T
stage, and N stage despite correlation coefficients less than
0.5 (P < 0.05; Table 4). Furthermore, multivariate linear re-
gression analyses were carried out based on the above re-
sults, but data were not shown due to the lack of fitted
models. These findings suggest that MK/TG and MK/FT4
may have potential prognostic utility for PTC.

Diagnostic utility of MK ratios for identifying malignant
thyroid nodules
To evaluate the diagnostic utility of the six indicators for
distinguishing PTCs from benign nodules, we drew ROC
curves and analyzed AUCs. As illustrated in Fig. 3, only
MK/TG and MK/FT4 showed significant AUC values
greater than 0.5. The AUCs and optimal cutoffs were
0.719 and 55.57 ng/mg for MK/TG and 0.677 and
0.11 μg/pmol for MK/FT4, respectively. No significant
difference was observed between MK/TG and MK/FT4.
Although MK/TG showed a higher sensitivity (58%) and
accuracy (62%) than MK/FT4 (44 and 50%, respectively),
MK/FT4 showed a better specificity (91%) than MK/TG
(87%) (Additional file 1). These findings suggest that
both ratios have good diagnostic performance for dis-
criminating benign nodules from PTCs.

Table 2 MK ratios in benign versus malignant thyroid nodules

Indicators Benign PTC P value

MK (ng/ml) 0.31 (0.02,3.83) 0.41 (0.01,16.93) 0.402

TG (ng/ml) 24,375.00 (336.50,300,500.00) 5467.00 (155.00,3,224,500.00) 0.008*

MK/TG (ng/mg) 20.16 (0.31.666.65) 80.59 (1.52,4021.37) 0.001*

FT4 (pmol/L) 9.54 (1.04,332.90) 3.87 (0.33,141.30) 0.037*

MK/FT4(μg/pmol) 0.03 (0.002,0.34) 0.09 (0.001,8.21) 0.006*

FT4/MK (pmol/μg) 32.48 (2.94,453.94) 11.50 (0.12,910.94) 0.006*

* P<0.05

Fig. 2 Scatter plots of (a) midkine (MK)/thyroglobulin (TG) ratio and (b) MK/free thyroxine (FT4) ratio in patients with benign thyroid nodules
versus papillary thyroid carcinomas (PTCs) confirmed by histopathology. Both MK/TG and MK/FT4 ratios were significantly higher for PTCs than for
benign thyroid nodules (P < 0.05)
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Performance of MK ratios in combination with FNAC
classification
We further explored whether MK ratios could comple-
ment preoperative FNAC-based diagnoses. As shown in
Additional file 2, the six indicators had significantly dif-
ferent values for the five FNA categories (P < 0.05); how-
ever, these observed differences were mainly accounted
for by FNA categories II and VI (Table 5), a finding that
is consistent with our clinical experience. Since FNAC is
known to have limitations for certain tumor types, we
placed more emphasis on FNA categories I, III, and V.
FNAC combined with MK/FT4 had higher sensitivity
(95%) and accuracy (96%) than FNAC alone (91 and
92%, respectively) (Table 6). FNAC in combination with
MK/TG did not change the diagnostic performance sig-
nificantly, demonstrating that MK/FT4 had better diag-
nostic utility for identifying malignant nodules in
combination with FNAC, particularly for FNA categories
I, III, and V.
Similarly, we evaluated the diagnostic utility of these in-

dicators when combined with the ACR TI-RADS. Based

on sonographic features considered suspicious for malig-
nancy (Additional file 3) and the histopathological diagno-
sis, the ROC curve for ACR TI-RADS had an AUC of
0.848 (P = 0.001) with an optimal cutoff value of 4.5 points
(Additional file 4). Based on this finding, we compared the
diagnostic efficacy of combining ACR TI-RADS with MK
ratios. As shown in Additional file 5, higher sensitivities
were identified when combining ACR TI-RADS with ei-
ther MK/FT4 (91%) or MK/TG (89%) than when using
ACR TI-RADS alone (83%). Higher accuracies were also
identified when combining ACR TI-RADS with either
MK/FT4 (88%) or MK/TG (87%) than ACR TI-RADS
alone (83%). Lower specificities were found, however,
when combining ACR TI-RADS with either MK/FT4
(65%) or MK/TG (70%) than ACR TI-RADS alone (74%).
These findings suggest that both MK ratios can comple-
ment preoperative sonographic diagnoses.

Discussion
Recently, thyroid nodules have become a globally preva-
lent endocrine disease. With the continuous

Table 4 Correlation between MK ratios and clinicopathological features

Clinicopathology MK TG MK/TG FT4 MK/FT4 FT4/MK

r p r p r p r p r p r p

Number of nodules −0.070 0.394 0.065 0.433 −0.116 0.158 0.062 0.451 −0.081 0.325 0.081 0.325
aMTD 0.352 0.000* −0.105 0.199 0.359 0.000* −0.180 0.027* 0.374 0.000* −0.374 0.000*
bETE 0.105 0.170 −0.235 0.002* 0.278 0.000* −0.215 0.004* 0.235 0.002* −0.235 0.002*

T stage 0.221 0.003* −0.164 0.031* 0.319 0.000* −0.151 0.048* 0.303 0.000* −0.303 0.000*

N stage 0.254 0.002* 0.027 0.742 0.166 0.042* −0.046 0.578 0.193 0.018* −0.193 0.018*
a MTD maximum tumor diameter, b ETE extrathyroidal extension
*P<0.05

Fig. 3 Diagnostic value of midkine (MK)/thyroglobulin (TG) and MK/free thyroxine (FT4) ratios for papillary thyroid carcinoma (PTC). Receiver
operating characteristic curves were drawn to assess the diagnostic utility of the (a) MK/TG ratio and the (b) MK/FT4 ratio in preoperatively
distinguishing PTCs from benign thyroid nodules. The areas under the curve (AUC) for the MK/TG and MK/FT4 ratios were 0.719 (P = 0.001) and
0.677 (P = 0.006), respectively, with no significant difference (P = 0.896). The cut-off values of MK/TG and MK/FT4 were 55.57 ng/mg (sensitivity
58%, specificity 87%, accuracy 62%) and 0.11 μg/pmol (sensitivity 44%, specificity 91%, accuracy 50%), respectively
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development of diagnostic techniques such as US and
FNA, the proportion of malignant thyroid nodules has
been increasing annually [20]. At present, even though
FNAC is known to have a high preoperative diagnosis
rate, there are still unavoidable false-negative results. In
order to improve the diagnostic efficiency of indetermin-
ate thyroid nodules, studies have focused on integrating
cytological information with clinical and US risk factors
of thyroid malignancy [21]. Furthermore, several other
attempts to employ novel biomarkers have been made to
solve these problems.
MK, as a novel and cost-effective biomarker, has been

shown to have high expression in at least 20 different
types of cancer, including thyroid cancer [22–26]. Ele-
vated MK in thyroid tissue has been reported to be
highly related to the presence of PTC [2, 12, 27, 28].
Kato et al. found that MK was undetectable in normal
thyroid tissue; however, the positivity rate and staining
intensity on immunohistochemical assays were signifi-
cantly increased in PTC tissue [12]. In addition, the
grade of immunohistochemical staining for MK in thy-
roid tissue has been used to identify PTCs and multi-
nodular goiters, as well as to predict the presence of
metastases [28]. Other studies have demonstrated that
MK concentrations in thyroid tissue are elevated in pa-
tients with PTCs compared to benign thyroid nodules,
which can preoperatively predict tumorigenesis in highly
suspicious thyroid nodules [4, 16]. The role of MK in
tumorigenesis may be related to its effects on cancer cell
proliferation, cell survival, apoptosis, and epithelial-
mesenchymal transitions [29–31].
On the other hand, the relationship between serum

MK levels and malignancy is not as clear. While Jee

et al. identified a significant difference in serum MK
concentrations between patients with PTCs and benign
nodules, Shao et al. found conflicting results [2, 4].
Therefore, it is possible that serum MK levels may have
utility for differentiating benign thyroid nodules from
PTC; however, these evaluations are likely to have a rela-
tively lower sensitivity, specificity, and accuracy [32, 33].
Markedly enhanced MK expression levels in patients
with various pathological conditions, especially cancers,
inevitably leads to low diagnostic specificity [22]. For this
reason, we first investigated MK/FT4 in FNA washout
from thyroid nodules to assess its potential to comple-
ment current preoperative diagnostic strategies. Com-
pared with MK/TG, MK/FT4 is more convenient and
feasible.
In our study, we found that both MK/FT4 and MK/

TG may be equally useful as biomarkers for quantitative
diagnoses of PTC, particularly for cytologically indeter-
minate thyroid nodules. Furthermore, although we did
not identify a significant relationship between MK levels
and extrathyroidal invasion, MK levels were significantly
associated with T and N staging, which is consistent
with findings of previous studies [2, 16, 34]. We also
found that MK/TG and MK/FT4 were closely associated
with MTD, ETE, T stage, and N stage. These findings
further strengthen the importance of these ratios as po-
tential biomarkers, demonstrating they may play critical
roles in predicting PTC risk.
The success of preoperative diagnostic evaluations

using FNAC and US examinations mainly depends on
the experience of pathologists and radiologists and the
level of care offered by hospitals. Fortunately, the ratio
method proposed in this study may reduce the relative

Table 5 The expression levels of MK ratios in FNA categories II and VI

Indicators FNA II FNAVI P value

MK (ng/ml) 0.23 (0.01,6.14) 0.42 (0.01,16.93) 0.005*

TG (ng/ml) 16,210.00 (147.50,552,650.00) 4831.50 (155.00,3,224,500.00) 0.000*

MK/TG (ng/mg) 16.82 (0.31,1752.56) 100.15 (1.52,4021.37) 0.000*

FT4 (pmol/L) 9.32 (0.42,332.90) 3.63 (0.33,141.30) 0.000*

MK/FT4(μg/pmol) 0.02 (0.001,0.62) 0.11 (0.01,8.21) 0.000*

FT4/MK (pmol/μg) 44.60 (1.61,1527.88) 9.37 (0.12,910.94) 0.000*

*P<0.05

Table 6 Diagnostic utility comparison of MK ratios in combination with FNAC

Sensitivity (%) Specificity (%) aPPV (%) bNPV (%) Accuracy (%)

FNA 91 100 100 67 92

MK/TG (ng/mg) 36 100 100 22 46

MK/FT4 (μg/pmol) 18 100 100 18 31

FNA +MK/TG (ng/mg) 91 100 100 67 92

FNA +MK/FT4 (μg/pmol) 95 100 100 80 96
a PPV positive predictive value, b NPV negative predictive value
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impact of operator-dependent FNAC and US. This study
demonstrated that FNAC combined with MK/FT4 had
superior diagnostic performance than FNAC alone for
nodules classified as either FNA I, III or V. In addition,
US in combination with either MK/TG or MK/FT4 had
an improved preoperative diagnostic performance than
US alone. Therefore, MK/FT4 may be a better quantita-
tive biomarker than MK/TG and may have utility as a
complementary cytological diagnostic tool, a finding that
certainly should be further explored in future studies.
Finally, this study has some limitations. First, there

were significant efforts to improve the diagnostic work-
up of indeterminate thyroid nodules, including the use
of US classification systems, the combination of US and
cytological features, and the use of elastography. Novel
biomarkers should be competitive in terms of cost-
effectivenes with currently available procedures. Sec-
ondly, the cost and feasability of MK measurement in
FNAs is a necessary issue to analyze in the future.
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