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Aurora-A kinase is differentially expressed
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Müllerian epithelium and benign,
borderline and malignant serous ovarian
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Abstract

Background: Aurora-A kinase is important for cellular proliferation and is implicated in the tumorigenesis of several
malignancies, including of the ovary. Information regarding the expression patterns of Aurora-A in normal Müllerian
epithelium as well as benign, borderline and malignant epithelial ovarian neoplasms is limited.

Methods: We investigated Aurora-A expression by immunohistochemistry in 15 benign, 19 borderline and 17
malignant ovarian serous tumors, and 16 benign, 8 borderline, and 2 malignant ovarian mucinous tumors. Twelve
fimbriae from seven patients served as normal Müllerian epithelium controls. We also examined Aurora-A protein
expression by western blot in normal fimbriae and tumor specimens.

Results: All normal fimbriae (n = 12) showed nuclear but not cytoplasmic Aurora-A immunoreactivity by
immunohistochemistry. Benign ovarian tumors also showed strong nuclear Aurora-A immunoreactivity. Forty-
eight percent (13/27) of borderline tumors demonstrated nuclear Aurora-A immunoreactivity, while the
remainder (52%, 14/27) lacked Aurora-A staining. Nuclear Aurora-A immunoreactivity was absent in all malignant
serous tumors, however, 47% (8/17) demonstrated perinuclear cytoplasmic staining. These results were statistically
significant when tumor class (benign/borderline/malignant) was compared to immunoreactivity localization or
intensity (Fisher Exact Test, p < 0.01). Western blot analysis confirmed the greater nuclear Aurora-A expression in
control Müllerian epithelium compared to borderline and malignant tumors.
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Conclusion: Aurora-A kinase is differentially expressed across normal Müllerian epithelium, benign and borderline
serous and mucinous ovarian epithelial neoplasms and malignant serous ovarian tumors., with nuclear expression
of unphosphorylated Aurora-A being present in normal and benign neoplastic epithelium, and lost in malignant
serous neoplasms. Further studies of the possible biological and clinical implications of the loss of nuclear Aurora-
A expression in ovarian tumors, and its role in ovarian carcinogenesis are warranted.
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Background
Aurora-A is a serine-threonine kinase involved in cell
cycle progression and mitosis [1, 2]. Aurora-A misex-
pression may lead to mitotic errors and genomic in-
stability [2]. Its overexpression has been implicated in
the tumorigenesis of several malignant neoplasms, in-
cluding hematolymphoid lesions [3], gliomas [4, 5], me-
dulloblastomas [6], and carcinomas of the breast [7],
gastrointestinal tract [8, 9] and ovary [10].
In normal tissues, Aurora-A directly interacts and co-

localizes with the nuclear pore complex in a transient
manner at the metaphase-anaphase transition during mi-
tosis. Aberrance of nuclear pore complex components
prevents Aurora-A translocation into the nucleus and
has been shown to cause polyploidy and mitotic catas-
trophe, potentially increasing the risk of chromosomal
translocations and mutations during early stages of can-
cer development [11, 12].
In ovarian carcinoma, Aurora-A mediates cell migra-

tion and adhesion [13]. Inhibition of Aurora-A prevents
the epithelial-to-mesenchymal transition, which is corre-
lated with more aggressive tumor progression and me-
tastasis [14]. Aurora-A promotes cell cycle progression
and genomic instability through repression of p21, pRb,
and BRCA2 [15], and overexpression has been associated
with tumor progression and poor prognosis [16]. In the
current study, we evaluated the differential nuclear and
cytoplasmic expression of Aurora-A in benign, border-
line and malignant serous and mucinous ovarian tumors
using immunohistochemical and western blot analyses.

Methods
Tumors and control Normal tissue
The use of human tissues was approved by the Henry
Ford Health System Institutional Review Board. Using
the search terms “serous cystadenoma, serous borderline
tumor, serous carcinoma, mucinous cystadenoma, mu-
cinous borderline tumor, and mucinous carcinoma” we
identified 84 ovarian neoplasms in our pathology case
files. Cases signed out as mixed serous and mucinous
neoplasms were excluded from the study. Seventy-seven
cases remained: 15 benign serous tumors, 19 borderline
serous tumors, 17 malignant serous tumors (including
16 high-grade serous carcinomas and 1 low-grade serous
carcinoma), 16 benign mucinous tumors, 8 borderline

mucinous tumors and 2 primary ovarian mucinous
adenocarcinomas. Tumor diagnoses were confirmed by
consensus review by three pathologists (KJA, JEC, NLL).
Additionally, 12 fimbriae from 7 patients were included
as normal tissue controls.

Immunohistochemistry
Four-micron thick paraffin-embedded sections were incu-
bated with anti-human Aurora-A antibodies (Dako North
America, Inc., 1:500 dilution). Slides received heat induced
epitope retrieval (HIER) using Envision FLEX Target Re-
trieval Solution Low pH, Citrate Buffer pH 6.1 (TRL).
HIER was performed in a DAKO PT LINK Chamber. In a
DAKO LINK Autostainer, endogenous peroxide was
blocked using 3% hydrogen peroxide for 5min. The pri-
mary antibody was incubated for 20min. Visualization
was achieved via a 15min incubation of FLEX + Rabbit
Linker, followed by a 20min incubation of FLEX HRP
(Dextran coupled with peroxidase and goat secondary
antibody against rabbit and mouse immunoglobulins), and
a 10min incubation with DAB Chromogen (3,3′-diamino-
benzidine tetrahydrochloride). TRIS buffer washes were
performed between each incubation. Slides were counter-
stained with Mayer’s Hematoxylin for 5min and washed
for 15min in tap water. Interpretation of staining pattern
and intensity was performed independently by two of the
study pathologists (JEC, NLL) and a consensus was then
reached. Positive staining was defined as greater than or
equal 5% of tumor cell immunoreactivity. The immunore-
activity localization was recorded as absent, cytoplasmic,
or nuclear immunoreactivity. The intensity of immunola-
beling was scored on a scale of 0 to 3 (0, negative, 1, weak,
2, moderate, 3, strong).

Tissue lysates and Western blotting
Samples of normal fimbriae and ovarian tumors were
obtained from fresh surgical specimens, snap frozen in
liquid nitrogen and stored in − 80 degrees Celsius. Fro-
zen tissue was homogenized on ice and processed into
nuclear and cytosolic fractions as previously described
[17]. Protease inhibitors (aprotinin (Sigma, St. Louis,
MO), leupeptin, pepstatin A, chymostatin, and AEBSF
(MP Biomedicals, Solon, OH)) and 1 μM DTT were
added to all lysis buffers. Protein concentration was de-
termined by the Pierce BCA method (Thermo Fisher
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Scientific, Waltham, MA). Nuclear and cytosolic frac-
tions (20 μg total protein per lane) were electrophoresed
on 10% polyacrylamide gels and electrotransferred to
PVDF membranes (Millipore, Billerica, MA). Blocking
was performed with 4% dried milk in TBST. Membranes
were incubated with anti-human Aurora-A antibodies
(Abcam, ab13824, 1:500), anti-human phospho- Thr288-
Aurora-A (Abcam, ab58494, 1:500) or anti-human β-
actin (Sigma, A2228, 1:5000) antibodies, followed by in-
cubation with goat anti-mouse IgG-HRP (Santa Cruz
Biotechnologies, Santa Cruz, CA) secondary antibody.
Blots were developed with Pierce ECL (Thermo Fisher
Scientific, Waltham, MA) and exposed to X-ray film.

Statistical analysis
Using VassarStats online statistical software (http://
www.vassarstats.net/), Fisher exact test was used to de-
termine the significance of differences in Aurora-A im-
munohistochemical stain localization and intensity
between benign, borderline and malignant ovarian neo-
plasms. A p-value of less than 0.05 was considered statis-
tically significant.

Results
Immunohistochemistry
There were 26 cases (34%) that were negative for
Aurora-A by immunohistochemistry (IHC), 8 cases
(10%) with cytoplasmic immunoreactivity, and 43 cases
(56%) with nuclear immunoreactivity. All 12 normal fim-
briae showed nuclear Aurora-A immunoreactivity. Al-
most all benign serous and mucinous tumors showed
moderate to strong nuclear staining (Fig. 1). Weak non-
specific cytoplasmic “blush-like” staining was present in
some of the normal control and benign cases; however,
no convincing perinuclear cytoplasmic staining was
demonstrated. Nuclear immunoreactivity was present in
42 and 62.5% of serous and mucinous borderline tu-
mors, respectively. The remaining borderline tumors
(52%) lacked any Aurora-A immunoreactivity (Fig. 2). In
contrast, nuclear immunoreactivity was absent in all 17
malignant serous tumors. One of two mucinous carcin-
omas showed weak nuclear staining, however data from
only two samples is insufficient to draw any conclusions
from. Forty-two percent (8/19) of the malignant tumors
demonstrated perinuclear cytoplasmic immunoreactivity
for Aurora-A (Table 1), ranging from weak to strong
(Table 2) (Fig. 3). Using Fisher exact test, the results
were found to be highly statistically significant when
tumor class (benign/borderline/malignant) was analyzed
against immunoreactivity pattern (absent/cytoplasmic/
nuclear) or intensity (weak, moderate, strong) (p < 0.01).
The only exception was when comparing Aurora-A
staining intensity between all serous and mucinous bor-
derline and malignant tumors. (Table 3).

Western blotting
Western blotting for Aurora-A protein confirmed its
predominantly cytoplasmic localization in malignant ser-
ous carcinomas, as well as in a borderline serous tumor,
and less so a borderline mucinous tumor. In contrast, a
near equal nuclear and cytoplasmic distribution of
Aurora-A was observed in normal fimbriae (Fig. 4, Sup-
plemental Fig. 1). Unlike total Aurora-A protein,
phospho-Thr288-Aurora-A was heavily concentrated in
the nuclear compartment of benign, borderline, and ma-
lignant serous ovarian tumors, as a whole. (Fig. 4, Sup-
plemental Fig. 1).

Discussion
Because of the complex structure and natural history of
the adult ovary it is often difficult to demonstrate nor-
mal benign ovarian epithelium as a control for immuno-
histochemical studies and essentially impossible to
isolate sufficient amounts for western blotting. Benign
Müllerian epithelium, most readily available in normal
fallopian tube fimbriae, shows gene expression patterns
similar to serous ovarian tumors [18] and is a good nor-
mal control for serous tumors, at least some of which
arise in the distal fallopian tube [19, 20].
Aurora-A expression has been reported to be an inde-

pendent prognostic factor for progression-free survival
in ovarian carcinoma [21]. One study correlated nuclear
and cytoplasmic Aurora-A overexpression in ovarian
serous carcinoma with shorter survival, high grade, high
proliferation index, and aberrant p53 expression [22].
Interestingly, that study also found that only cytoplasmic
Aurora-A expression was associated with tumor cell an-
euploidy, which was a strong predictor of poor outcome.
Yet the biology of Aurora-A is complex, and it may also
possibly function as a tumor suppressor [4].
We found that benign fimbriae had the highest nuclear

to cytoplasmic ratio of total Aurora-A based on western
blotting. Benign serous and mucinous ovarian tumors
also showed strong nuclear immunoreactivity by immu-
nohistochemistry. Borderline tumors tended to show nu-
clear immunoreactivity like benign tumors, however it
was generally weaker, and they sometimes lacked nu-
clear staining like malignant tumors. In contrast, none
of the malignant serous tumors we examined demon-
strated nuclear Aurora-A immunoreactivity. Unlike be-
nign and borderline tumors, malignant serous tumors
sometimes showed cytoplasmic immunoreactivity for
Aurora-A. This is in line with previous work showing
low Emi1 expression in the cytoplasm of neoplastic cells
in some serous ovarian carcinomas through immunohis-
tochemical analysis [23], as Emi1 protects Aurora-A
from degradation by the anaphase promoting complex/
cyclosome [24]. Notably, the differential localization of
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other mitotic spindle proteins in benign and malignant
tissue has also been reported [11].
Although nuclear total Aurora-A expression was not

detected in serous carcinoma by immunohistochemistry,
nuclear phospho-Thr288-Aurora-A expression was iden-
tified in serous carcinomas by western blotting. It is

possible that phospho-Thr288-Aurora-A is less efficiently
recognized by the “total’ anti-Aurora-A antibody, is
much less abundant compared to total Aurora-A, or
both. Nevertheless, there appears to be decreased accu-
mulation of total Aurora-A in the nucleus of serous
ovarian carcinomas and often increased accumulation in

Fig. 1 H&E stains and Aurora-A immunohistochemistry in normal tissue and benign neoplasms. Hematoxylin and eosin (H&E) stains and Aurora-A
nuclear immunoreactivity in control normal Müllerian epithelium (a, 200x original magnification, and b, 400x original magnification) and benign
serous (c, 200x original magnification, and d, 400x original magnification) and mucinous cystadenomas (e and f, 200x original magnification)
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the cytoplasm, where it is known to perform many of its
pro-mitotic functions [25]. This finding was demon-
strated by both IHC and western blotting. It must be re-
membered that negative immunohistochemistry does
not mean the protein is absent from the cell, but that it
is not detectable by this relatively insensitive method.
Phosphorylation of Aurora-A at Thr288 correlates with

activation of its kinase activity. The nuclear and cyto-
plasmic localization of Aurora-A, however, does not ap-
pear to be dependent on its kinase activation [26].
Furthermore, Aurora-A may be able to perform func-
tions inside the nucleus that are not related to its kinase
domain, including possibly acting as a transcriptional co-
activator [27]. This should not be surprising given that
although there is a large degree of homology between

the catalytic domains of all human Aurora proteins, they
perform unique roles inside the cell for which their pre-
cise localization is a key factor [28]. Indeed, the func-
tional differences between Aurora-A and Aurora-B are
determined by their spatial compartmentalization [29].
This suggests that spatial regulation could be an import-
ant factor in the oncogenic role of Aurora-A. Increased
cytoplasmic staining of Aurora-A in malignant cells may
be due to increased Aurora-A transcription, thus over-
whelming its nuclear transport and leading to cytoplas-
mic accumulation and decreased nuclear accumulation
of unphosphorylated Aurora-A.
Negative nuclear Aurora-A expression in malignant

and some borderline tumors may have potential implica-
tions in the biology of serous ovarian tumors. The fact

Fig. 2 H&E and absence of Aurora-A immunoreactivity in a borderline serous tumor (a, 100x original magnification, b 400x original magnification)

Table 1 Aurora-A staining localization for each tumor type

Tissue Type Absent Cytoplasmic Nuclear Total

Fimbriae Control 0 0 12 12

Serous Tumors Benign 1 0 14 15

Borderline 11 0 8 19

Malignant 9 8 0 17

Total 21 8 22 51

Mucinous Tumors Benign 1 0 15 16

Borderline 3 0 5 8

Malignant 1 0 1 2

Total 5 0 21 26

All Tumors Benign 2 0 29 31

Borderline 14 0 13 27

Malignant 10 8 1 19

Total 26 8 43 77

Table 2 Aurora-A staining intensity for each tumor type

Tissue Type Absent Weak
(1)

Moderate
(2)

Strong
(3)

Total

Fimbriae Control 0 2 5 5 12

Serous
Tumors

Benign 1 1 5 8 15

Borderline 11 6 2 0 19

Malignant 9 5 1 2 17

Total 21 12 8 10 51

Mucinous
Tumors

Benign 1 1 8 6 16

Borderline 3 2 1 2 8

Malignant 1 1 0 0 2

Total 5 4 9 8 26

All Tumors Benign 2 2 13 14 31

Borderline 14 8 3 2 27

Malignant 10 6 1 2 19

Total 26 16 17 18 77
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that inhibition of Aurora-A has been found to synergis-
tically enhance the cytotoxicity of taxanes [30–32] and
carboplatin [33, 34], two of the most important chemo-
therapeutics for ovarian cancers [35], provides justifica-
tion for further study of the possible roles of Aurora-A
in the diagnosis and treatment of ovarian neoplasms.

Conclusion
Aurora-A kinase is differentially expressed across normal
Müllerian epithelium, benign and borderline serous and
mucinous ovarian epithelial neoplasms and malignant
serous ovarian tumors. Normal Müllerian epithelium as
well as benign ovarian neoplasms show distinct nuclear
expression of Aurora-A on both IHC and western blot,
while malignant serous ovarian tumors demonstrate loss

Fig. 3 Aurora-A immunoreactivity in high-grade serous carcinoma. High-grade serous carcinomas with negative (a), weak (b) and strong (c)
cytoplasmic Aurora-A immunoreactivity (400x original magnification)

Table 3 Results of Fisher’s Exact Test for comparisons of Aurora-
A immunoreactivity localization and intensity between different
tumor categories

Tumor Categories P value (Fishers
Exact Test)

Aurora-A Localization in all Benign vs. Malignant
Tumors

9.340E-11

Aurora-A Localization in all Borderline vs.
Malignant Tumors

0.00002

Aurora-A Localization in all Benign vs. Borderline
Tumors

0.00022

Aurora-A Intensity in all Benign vs. Malignant
Tumors

0.000005

Aurora-A Intensity in all Borderline vs. Malignant
Tumors

0.9

Aurora-A Intensity in all Benign vs. Borderline
Tumors

0.0000014

Aurora-A Localization in Benign vs. Malignant
Serous Tumors

3.181E-8

Aurora-A Localization in Borderline vs. Malignant
Serous Tumors

0.00006

Aurora-A Localization in Benign vs. Borderline
Serous Tumors

0.003

Aurora-A Intensity in Benign vs. Malignant
Serous Tumors

0.001

Aurora-A Intensity in Borderline vs. Malignant
Serous Tumors

0.62

Aurora-A Intensity in Benign vs. Borderline
Serous Tumors

0.00002

Fig. 4 Western blotting for Aurora-A and phospho-Thr288-Aurora-A.
Western blotting for the localization of total Aurora-A and phospho-
Thr288-Aurora-A in the cytoplasmic and nuclear fractions of tumor
lysates. Loading of total protein for the cytoplasmic fraction of the
serous borderline tumor example appears lower as indicated by low
β-actin, however this sample still shows higher cytoplasmic total
Aurora-A. The latter is confirmed on another western blot utilizing
this sample depicted in Supplemental Fig. 1
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of nuclear expression, but showed perinuclear cytoplas-
mic immunoreactivity in approximately 50% of cases on
IHC. Further studies are warranted in order to further
understand the possible biological and clinical implica-
tions of the loss of non-phospho-Thr288-Aurora-A nu-
clear expression in ovarian tumors, and its role in
ovarian carcinogenesis.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13000-021-01158-4.

Additional file 1: Supplemental Figure 1. Additional western blot of
neoplasm samples used in Fig. 4 for total Aurora-A showing similar results
(a). Separate western blots of normal fimbriae for total Aurora-A showing
approximately equal nuclear and cytoplasmic accumulation.
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