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Abstract 

Abdominal aortic aneurysm (AAA) is a pathologic enlargement of the infrarenal aorta with an associated risk of rup‑
ture. However, the responsible mechanisms are only partially understood. Based on murine and human samples, 
a heterogeneous distribution of characteristic pathologic features across the aneurysm circumference is expected. Yet, 
complete histologic workup of the aneurysm sac is scarcely reported. Here, samples from five AAAs covering the com‑
plete circumference partially as aortic rings are investigated by histologic means (HE, EvG, immunohistochemistry) 
and a new method embedding the complete ring. Additionally, two different methods of serial histologic section 
alignment are applied to create a 3D view. The typical histopathologic features of AAA, elastic fiber degradation, 
matrix remodeling with collagen deposition, calcification, inflammatory cell infiltration and thrombus coverage were 
distributed without recognizable pattern across the aneurysm sac in all five patients. Analysis of digitally scanned 
entire aortic rings facilitates the visualization of these observations. Immunohistochemistry is feasible in such speci‑
men, however, tricky due to tissue disintegration. 3D image stacks were created using open‑source and non‑generic 
software correcting for non‑rigid warping between consecutive sections. Secondly, 3D image viewers allowed visuali‑
zation of in‑depth changes of the investigated pathologic hallmarks. In conclusion, this exploratory descriptive study 
demonstrates a heterogeneous histomorphology around the AAA circumference. Warranting an increased sample 
size, these results might need to be considered in future mechanistic research, especially in reference to intraluminal 
thrombus coverage. 3D histology of such circular specimen could be a valuable visualization tool for further analysis.
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Introduction
Abdominal aortic aneurysm (AAA) is the most frequent 
aortic aneurysm bearing an inherent threat of rupture 
[12]. Currently, only surgical aneurysm exclusion by 
either open or endovascular repair at a specific diameter 
threshold corresponding to an estimated annual rupture 
risk is an accepted treatment [8, 38]. Below this diameter, 
watchful waiting is indicated and past as well as current 
attempts for medically induced AAA growth inhibition 
have proven unsuccessful in clinical trials [21, 24].

This might be due to a still incomplete understand-
ing of the underlying pathogenesis and mechanisms 
involved in aneurysm initiation and progression [13, 29]. 
While specific features, such as angiogenesis and matrix 
degradation in the aneurysmatic vessel wall, have been 
identified as key drivers of aneurysm progression in gen-
eral—histologic studies have revealed a broad hetero-
geneity of the disease between individual patients [5, 7, 
26]. Recently, it has become obvious that intraluminal 
thrombus (ILT) coverage providing a viscoelastic and 
enzymatically active compartment with eventual uneven 
biomechanical force distribution might be associated 
with a distinct histomorphologic apparel [3, 14].

However, intraoperative sampling of AAA specimens is 
most frequently restricted to the left-anterior and ante-
rior wall of the aneurysm sacincised during open repair. 
Thus, mechanisms at the actual rupture site, as well as the 
other parts of the aneurysm circumference, can only be 
speculated on and are scarcely reported [10, 39]. Despite 
consensual guidelines on preparation, nomenclature and 
diagnostic criteria for histopathologic reports on aortic 
specimen, initially developed for the ascending aorta, the 
variety of features reported is huge and most often not 
standardized [16, 34, 35].

Classic histology is restricted to a 2D examination of 
limited numbers of 1–4 µm thicksections, only partially 
representing the entire specimen [26, 28]. Here, a volu-
metric visualization, applying 3D reconstructions of his-
tology based whole slide image scans might be helpful 
for better visualization enabling a more in-depth analysis 
[15, 23].

Thus, in this small exploratory study we aimed to proof 
feasibility of histologic preparation and staining of com-
plete AAA rings and 3D histology and provide histologic 
insights from the complete circumference, especially the 
most often neglected dorsal part of the AAA.

Patients, material and methods
Patient identification and ethical statement
Patient samples were acquired at two university hospi-
tals during 2018 to 2020 from open aortic repair proce-
dures, where anatomically and surgically feasible without 

posing additional threat to the respective patient. We 
aimed to take samples perpendicular to the aneurysm 
centerline axis (Fig. 1). In all cases the aneurysm sac was 
closed over the proximal anastomosis where possible to 
prevent direct contact of the duodenum and the pros-
thesis. Additionally, the retroperitoneum was closed to 
prevent direct contact of the intestine and the prosthesis. 
Indications for open repair were surgical reasons, patient 
will or operator’s choice in line with international guide-
lines [38].

Patient data was pseudonymized for biobanking and 
anonymized for further analysis. The study was per-
formed in accordance with the declaration of Helsinki 
and tissue sampling was approved by the local ethics 
committee (Ethikkommission Klinikum rechts der Isar: 
576/18 S and Ethikkommission Universitätsspital Zürich: 
2020–00378).

Patient demographics and comorbidities (age, gender, 
arterial hypertension, smoking status, peripheral arte-
rial disease, coronary artery disease, hyperlipidemia, 
diabetes, chronic obstructive pulmonary disease, dialy-
sis or renal insufficiency) were retrieved from electronic 
patient records.

Sample acquisition and preparation
After removal from the intraoperative situs, tissue was 
immediately placed in phosphate-buffered saline for 
transportation into the laboratory.

Classic approach (patients 1 and 2)
Samples were then fixed in formalin (4% PFA) for 24 h. 
If necessary, decalcification on EDTA basis (Entkalker 
soft SOLVAGREEN®, Carl ROTH, Karlsruhe, Germany) 
was performed for 2–7  days. Afterwards specimens 
were prepared for paraffin embedding in standard size 
(40 × 28 × 6.8  mm) POM histology cassettes (Kartell, 
Noviglio, Italy).

Entire aortic ring approach (patients 3–5)
The circumference of the aneurysm sac was recon-
structed using a Prolene 5 0 (Ethicon) suture. Due to the 
expected tissue shrinkage, samples were mounted on a 
conical shaped hand-crafted polystyrene cylinder and 
pinned down with 20G needles in a fashion allowing lon-
gitudinal movement of the sample on the cylinder (Suppl. 
Fig. 1). The cylinder contained additional canals to enable 
adequate formalin penetration. After fixation and even-
tual decalcification (s. above), the sample was cut into 
approx. 6 mm thick rings with the cylinder and embed-
ded in large (75 × 52 × 15 mm) histology cassettes (Engel-
brecht, Edermünde, Germany). The suture necessary to 
enable adequate fixation and sectioning, was removed 
before paraffinization.
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Histologic staining
Sections of paraffin-embedded samples (2 µm for clas-
sic samples, 3  µm for ring samples) were mounted 
on glass slides (Menzel SuperFrost, 76 × 26 × 1  mm, 
Fisher Scientific, Schwerte, Germany for standard size; 
52 × 72 × 1  mm, Engelbrecht, Edermünde, Germany 
for ring approach). Hematoxylin–eosin (HE) (etha-
nolic eosin Y solution, Mayer’s acidic hemalum solu-
tion, Waldeck, Münster, Germany) as well as Eelastica 
van Gieson (EvG) (picrofuchsin solution after Romeis 
16th edition, Weigert’s solution I after Romeis 15th 
edition) stainings were accomplished according to the 
manufacturer’s protocol. Slides were covered using Per-
tex (Histolab products, Askim, Sweden) as mounting 
medium and glass coverslips (24 × 50 mm for standard 
size, 50 × 60 mm for ring approach, Engelbrecht, Eder-
münde, Germany).

Immunohistochemistry
Formalin-fixed, paraffin-embedded (FFPE) sections used 
for immunohistochemistry were mounted on poly-l-
lysine (Merck, Darmstadt, Germany) pretreated glass 
slides for better attachment (classic approach and ring 
approach) or untreated (ring approach). The sections 
were incubated over night at 60  °C, followed by de-par-
affinization. Demasking of the antibody binding sites 
was achieved by cooking for 7 min in citrate acid (pH 6), 
made by dissolving citric acid monohydrate (Carl Roth, 
Karlsruhe, Germany) in distilled water. After every fol-
lowing step the samples were washed in Tris-buffer 
(Trizma base, NaCl, Merck, Darmstadt, Germany). 
Endogenous peroxidase activity was quenched by incu-
bating for 15  min with 3% hydrogen peroxide (Merck, 
Darmstadt, Germany). Subsequently, the sections were 
incubated with the respective primary antibody (Suppl. 
Table 1). Dako REAL Antibody Diluent (Dako, Glosirup, 

Fig. 1 CT‑angiograms and sample acquisition site. The figure presents transverse (upper panel) and coronal (lower panel) representative images 
of patients 1–5. The dotted box represents the approx. site of sample acquisition. Of note, ruptures site in Patient 4 (arrow). All samples are 
presented in the same orientation (A = anterior, P = posterior, R = right, L = left, H = head, T = tail). Of note, intraluminal thrombus (ILT) ( +) is observed 
to various extents in all patients. Below the CTA images, the corresponding further histologic presentation in the following (supplement) figures 
for each individual patient is given. Dimensions of macroscopic samples are listed in Table 1
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Denmark) was used for antibody dilution. Target staining 
was done by incubating the samples for 25 min with the 
biotinylated secondary antibody, followed by incubation 
of 25 min adding streptavidin peroxidase and additional 
incubation for 2–3  min with DAB + chromogen, diluted 
in horseradish peroxidase substrate buffer (Dako REAL 
Detection System Peroxidase/DAB + , Rabbit/Mouse Kit; 
Dako, Glosirup, Denmark). Counterstaining was done 
with Mayer’s hemalum solution (Carl Roth, Karlsruhe, 
Germany). The sections were dehydrated and subse-
quently covered as described above. Especially for the 
large tissue sections of the aortic ring approach, detach-
ment can occur to a certain extent, mostly during the 
demasking, most likely due to a greater surface. For our 
ring specimens, pretreatment of slides with poly-l-lysine, 
incubation of sections for 48 h at 60 °C, staining immedi-
ately after sectioning, and careful handling of specimens 
was the best and most reliable method (data not shown).

All antibodies have been used and validated in our lab 
before, also on aortic samples [5, 25]. Antibody specific-
ity is routinely tested on tonsil samples and evaluated by 
a pathologist. Here, control incubations were performed 
with secondary antibody only (data not shown).

Digital slide scanning and semi‑quantitive histology
Slides (including immunohistochemistry) were then 
scanned with Aperio AT2 (Leica, Wetzlar, Germany), 
and pictures were taken with the Aperio ImageScope 
software (Leica). For large slides, an AxioScan.Z1 
(Zeiss, Oberkochen, Germany) microscope using a 
Plan-Apochromat 10x/0.45 (Zeiss) objective and a HV-
F202SCL (Hitatchi, Tokio, Japan) camera was available. 
Scanned slides were analyzed and prepared for compos-
ite figures using QuPath-0.3.2 open-source software [1]. 
Each cutout presented in the respective composite figure 
aims to cover at least one view from the luminal surface 
(eventual thrombus) to the adventitia. Wall thickness of 
fixed samples was measured with QuPath in 3–4 loca-
tions with macroscopic maximum diameter covering a 
perpendicular length from the beginning of the adventi-
tia (peri-adventitial fatty tissue to collagen margin) to the 
supposed end of the cellular wall. The mean ± one stand-
ard deviation is shown in Table  1. Additionally, AHA 
classification for atherosclerosis was used to describe the 
amount of atherosclerosis [33].

Section alignment and 3D histology image acquisition
Serial sections from Patients 3 and 4 were scanned and 
aligned digitally using the HeteroGenius MIM Multi-
stain Add-on (HeteroGenius, Leeds, UK) to form two 
3D image stacks [32]. This add-on initially estimates rela-
tive rotation and translation between sequential sections 
and corresponding sections of different stains, before 

correcting for non-rigid warping caused by the section-
ing process. The HE stained stack was used as the refer-
ence stack, and the EvG stack was used as the secondary 
stack, with the software aligning all images in the refer-
ence stack first, before aligning the secondary images to 
their corresponding primary image. The aligned sections 
were exported at full resolution in SVS format for visu-
alization in the open-source software Inviwo [15, 18]. The 
white background of the slide images was turned trans-
parent to reveal the three-dimensional structure of the 
slide stack. Additional depth cues are provided by adding 
a dark tint to the transparent regions.

Additionally, as second method, we attempted the 3D 
reconstruction of histological samples using exclusively 
open source software. Therefore, a subset of histologi-
cal sections were first aligned with an arbitrarily chosen 
central section of the available stack using a registration 
workflow [9]. Briefly, this applied Big Warp registration 
toolbox and Fiji (v 1.53q) for the alignment as well as 
QuPath (v4.0) for the data handling and image transfor-
mations. The data was then exported as separate images 
in tif-format and concatenated along the z-axis. We 
finally used Napari to generate a freely navigable render-
ing of the histological data stack [31].

Results
Five circumferential AAA patient samples were available 
for further analysis, thereof one ruptured and four elec-
tive cases. Circumferential ILT was present in every AAA 
(Fig. 1). Patient details and indications for open repair are 
shown in Table  1. None of the patients had connective 
tissue disease or showed any such stigmata. All patients 
were successfully operated and could be discharged 
from hospital after 16.6 ± 10.6 days. No aneurysm related 
bleeding complication occurred (data not shown).

Sample acquisition covered rings perpendicular to the 
aneurysm centerline from the proximal or distal part of 
the aneurysm sac (Fig.  1, Suppl. Fig.  1). For patient 2, 
the complete middle and distal section of the aneurysm 
including the aortic bifurcation was available (Fig. 2). For 
standard histology and staining, no major problems were 
observed during the slide production. However, immu-
nohistochemistry was technically challenging for aortic 
rings, especially during epitope retrieval due to tissue/
slide disintegration (Suppl. Figs. 18–20).

Circumferential histologic evaluation included elas-
tic fiber loss and fragmentation. Specifically, less than 
25% of the expected 20–25 layers were observed in 
all patients and all samples. Collagen deposition or 
medial fibrosis, calcification, intramural micro bleed-
ings, inflammatory cell infiltration and eventual throm-
bus coverage revealed a very distinct histomorphology 
along the perimeter of the aneurysm sac (Figs. 2, 3, 4, 
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5 and 6, Suppl. Figs.  2–20). Disorganization of vascu-
lar smooth muscle cells and lamellar units was seen 
to a great extent, with no obvious distribution pattern 
of morphologic features for i.e. anterior vs. posterior 
aneurysm wall in all patients investigated. This was 
similarly observed for patient 2 in longitudinal orien-
tation (Fig. 2, Suppl. Figs. 11–16). A clearly detectable 
intima was absent in most samples, where ILT was vis-
ible to various extents. Mucoid depositions were seen 
in some samples adjacent to the thrombus (Figs. 2 and 
4). Similar aneurysm sac morphology was seen at vari-
ous ILT coverage (Figs.  1, 4 and 6). Inflammatory and 
immune-cell visualization equally showed a heteroge-
neous distribution of i.e. CD3, CD68 and CD45 posi-
tive cells along the circumference (Figs. 3 and 5, Suppl. 

Figs. 3–10, 18, 19). However, histology at the potential 
rupture site in patient 4 was distinct from the remain-
ing perimeter in this unique sample showing intramural 
hemorrhage and CD45/CD20 positive adventitial infil-
trates (Fig. 5, Suppl. Figs. 17–19).

In our subjective perception, analysis and visualiza-
tion were easier using complete circular samples made 
digitally available (Figs. 4, 5 and 6, Suppl. Figs. 17–20). 
For patients 1 and 4, immunohistochemistry for vari-
ous inflammation-related epitopes emphasized these 
impressions (Figs.  3 and 5, Suppl. Figs.  3–10, 18, 19, 
Suppl. Table 1).

Finally, the consecutive aortic ring alignements are 
shown for 3D histology. This provided an illustra-
tive amendment to the observations described above, 
emphasizing the distinct circumferential histomorphol-
ogy in all samples investigated (Fig. 6).

Fig. 2 Patient 2 sample acquisition, cutting scheme and histomorphology. CT‑angiogram and photo of the un‑fixed specimen and sequentially 
cut formalin fixed sample demonstrate the approx. acquisition site. The dotted box and circle depict the specific termination for samples (1–9; 
I‑VIII). Histologic photos show eight (I‑VIII) representative whole wall cutouts at level 3 (HE staining). Specific histologic features observed include: A 
fragmented elastic fibres, B collagen deposition/medial fibrosis, C calcification, D intramural bleeding, E mononuclear inflammatory cell infiltration 
F thrombus coverage, and G cholesterol clefts. Overall, disorganization of vascular smooth muscle cells and lamellar units is seen to various extents. 
All samples are presented in the same orientation (A = anterior, P = posterior, R = right, L = left, H = head, T = tail). For all histologic photos the aortic 
lumen is oriented upwards (scale bar 250 µm)
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Discussion
To our best knowledge, this study shows for the first time 
a detailed histomorphology of circular AAA specimen 
and explored the possibility of embedding complete aor-
tic rings from intraoperative human samples. Here, we 
demonstrate a very heterogeneous appearance around 
the aneurysmatic circumference (Figs.  2, 3, 4, 5 and 6, 
Suppl. Figs. 2–20).

This uneven histomorphologic apparel observed 
among individual patients is in line with previous results 
from the ascending aorta as well as the infrarenal aneu-
rysmatic aorta [4, 5, 11, 17, 26]. Here, even a consensus 
document on diagnostic criteria exists [34, 35]. However, 
AAA patients are typically older than patients suffering 
from ascending or thoracic aortic disease and have rarely 
connective tissue disorders. Additionally, the infrarenal 
aorta has a different composition and phylogenetic back-
ground [27]. Thus histologic hallmarks might differ [29].

Additionally, a high variance of gene expression pat-
terns has been demonstrated between i.e. tunica media 
and adventitia emphasizing the distinct pathologic fea-
tures associated with a distinct histomorphology [6, 
22]. Our images demonstrate an uneven distribution of 
defined histopathologic features over the entire aneu-
rysm circumference, differently affecting the adventi-
tial and medial layer (Figs. 2 and 5, Suppl. Figs. 18 and 
25). While this intra-individual disease specificity is 
often considered responsible for negative results from 
previous and current clinical trials on AAA growth 
abrogation [21, 24] – one could also hypothesize that 
the inflicted pathomechanisms may be found in every 
patient at differing circumferential and longitudinal 
positions, yet might not always play the predominant 
role in the imbalance of pro-aneurysmatic pathways 
and potential healing responses [13, 29].

Fig. 3 Patient 1 sample acquisition, histomorphology and immunohistochemistry left anterior wall (III) and dorsal wall (VIII). CT‑angiogram 
and dotted lines demonstrate the approx. site of samples acquisition. Histologic and immunohistochemistry photos show a representative cutout 
from the same position of the specimen for HE, EVG and various antibody stainings. Specific histologic features observed include: A fragmented 
elastic fibers, B collagen deposition/medial fibrosis, C calcification, E mononuclear inflammatory cell infiltration, F thrombus coverage and H 
mucoid deposition. CD 68 positive cells are seen around the intramural plaque (upper panel) but also in the ILT (lower panel). CD 3 positive cells are 
located in proximity to the plaque, whereas CD45 positive cells are seen in and close to the ILT. For all histologic photos the aortic lumen is oriented 
upwards. All samples are presented in the same orientation (A = anterior, P = posterior, R = right, L = left, H = head, T = tail) (scale bar 200 µm; cutouts 
50 µm)
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In addition, an uneven geometry of the aneurysm cen-
terline might influence an uneven distribution of ILT 
affecting the histologic apparel and vice versa [3, 30]. 
The five patients investigated here did not show exces-
sive bulging to either side of their respective aneu-
rysm (Fig.  1). Also, the maximum diameters varied 
from 55-75  mm (Table  1). However, no correlations 
between histologic features and AAA diameter have 
been reported so far. The possible association of ILT on 
histologic appearance should be investigated in a larger 
patient cohort. In this context, experimental radiology 
using new radioactive tracers or specific magnetic reso-
nance imaging probes have shown an unequal distribu-
tion of their respective target in human aortic aneurysm, 
both in circumferent and longitudinal direction [19, 20].

Previous reports on specific pathologic features from 
AAA rupture sites have demonstrated an increased 
local expression of matrix-metalloproteinases, however, 
are inconclusive about the cellular microenvironment 

and the potentially involved cytokines [39, 40]. The 
sample of patient 4 included in this study connects the 
potential macroscopic rupture site to a bleb in the aor-
tic ring, which did show intramural hemorrhage and 
inflammatory cells positive for CD20 and CD45 (Fig.  5, 
Suppl. Figs. 18 and 19). However, such observations and 
reported results need to be considered with caution, 
since a standardized approach towards histologic analy-
sis is missing for AAAs [4, 16, 26, 35]. Humoral immune 
cells such as B-/T-cells have been shown to reside in the 
aneurysm wall before (Figs.  3 and 5, Suppl. Figs.  3–10) 
[13, 29]. Additionally, the exact localization of sample 
acquisition is not defined in most studies and certainly 
non-standardized regarding the potential rupture site 
[39, 40].

These limitations also apply to our study with only 
five individual tissue samples included in total and one 
ruptured case specifically. Thus, the results reported 
are purely descriptive and no universal conclusions can 

Fig. 4 Patient 3 sample acquisition and histomorphology. CT‑angiogram and dotted lines demonstrate the approx. site of samples acquisition. The 
arrow marks the aneurysm sac incision during open repair. The histologic photos show a complete circular preparation of the aneurysm sac for HE 
(outer picture) and EVG (inner picture). Samples are oriented in line with the CT‑angiogram. The left side of the aneurysm is covered with notable ILT 
( +), whereas only minimal ILT seen on the right part of the aneurysm sac. The histomorphology comparing both sides of the aneurysm sac appears 
similar (cutouts) (A = anterior, P = posterior, R = right, L = left, H = head, T = tail) (scale bar 5 mm each, upper bar = inner photo)
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be drawn. Most importantly, longitudinal data from the 
middle of the AAA to the aortic bifurcation was only 
available for patient 2 (Fig. 2, Suppl. Figs. 11–16). How-
ever, such information is crucially warranted since many 
expressions analysis focus on the differences between i.e. 
non-dilated aneurysm neck areas and the most dilated 
parts within the same patient [2, 40].

While three dimensional radiologic imaging is fre-
quently used to study the biomechanical behavior of aor-
tic aneurysms, 3D histology has been mostly reported to 
improve diagnostic accuracy and visualization in can-
cer specimen [37]. Both, HE and immunofluorescence 
for vessel imaging have been applied, [15, 36]. Techni-
cal challenges include correct tissue preparation and 

clearing, followed by digital slide registration and compu-
tation of 3D models with contrast between the horizontal 
resolution of the 2D slide images, which is 0.25 um/pixel 
at 40 × magnification, and the total number of images in 
the slide stack. Eventual correction for tissue shrinkage, 
misalignment and missing data between two consecutive 
slides and artifacts of slide preparation, i.e. different stain 
colors, overlapping tissue have an effect on registration 
and 3D histology [28].

While technically feasible, the diagnostic benefit is 
yet to be elucidated. However, regarding the examples 
provided in this study, 3D histology is of great value to 
improve visualization of complex intraoperative speci-
men by enabling the interactive exploration of the 

Fig. 5 Patient 4 sample acquisition, rupture site and histomorphology. CT‑angiogram demonstrates the approx. site of sample acquisition. The 
arrow marks the aneurysm sac incision during open repair. Photo shows the intraoperative situs with the rupture site (asterisk) at the dorsal right 
part of the aneurysm sac (iliac arteries marked with red vessel loops. The histologic photos show a complete circular preparation of the aneurysm 
sac (HE) oriented in line with the CT‑angiogram. Cutouts are presented from the right lateral wall (upper panel) and the rupture site (lower panel). 
EvG stainig demonstrates fragmented elastic fibers and matrix remodeling as described above for the lateral wall and an amorphous bleb‑like 
structure with massive intramural hemorrhage (#) at the rupture site. At the outer margins of this structure, CD45 and CD20 positive cells are found 
in the adventitia. For all histologic photos the aortic lumen is oriented upwards. All samples are presented in the same orientation (A = anterior, 
P = posterior, R = right, L = left, H = head, T = tail) (scale bar 5 mm for HE; cutouts upper panel 250 µm; cutouts lower panel 500 µm)
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co-registered slide stack, thereby revealing three-dimen-
sional structures also along the z-axis. We demonstrated 
the generation of a 3D rendering of the aligned histologi-
cal sections using exclusively open-source software [31]. 
To improve the 3D histology, many more slides of the 
same sample with a better registration between consecu-
tive slides are required to compensate for the mentioned 
shortcomings. Limitations are given by the dimensions of 
the data rather than the software used as well as the tis-
sue disintegration during the mounting process (data not 
shown).

Conclusion
This exploratory study including five circumferential 
detailed analyzes of human AAA specimen demonstrates 
heterogeneous histomorphology along the aneurysm 
sac perimeter. Warranting a higher number of speci-
men investigated, these results need to be considered in 
future mechanistic research and advanced imaging. 3D 

histology of such circular specimen is time consuming, 
yet feasible and could be a valuable tool for improved vis-
ualization and further analysis.
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