
Dörrich et al. Diagnostic Pathology          (2023) 18:121  
https://doi.org/10.1186/s13000-023-01407-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Diagnostic Pathology

Explainable convolutional neural 
networks for assessing head and neck cancer 
histopathology
Marion Dörrich1, Markus Hecht2,3, Rainer Fietkau3,4, Arndt Hartmann4,5,6, Heinrich Iro7, 
Antoniu‑Oreste Gostian4,6,7, Markus Eckstein4,5,6† and Andreas M. Kist1*† 

Abstract 

Purpose Although neural networks have shown remarkable performance in medical image analysis, their transla‑
tion into clinical practice remains difficult due to their lack of interpretability. An emerging field that addresses this 
problem is Explainable AI.

Methods Here, we aimed to investigate the ability of Convolutional Neural Networks (CNNs) to classify head 
and neck cancer histopathology. To this end, we manually annotated 101 histopathological slides of locally advanced 
head and neck squamous cell carcinoma. We trained a CNN to classify tumor and non‑tumor tissue, and another CNN 
to semantically segment four classes ‑ tumor, non‑tumor, non‑specified tissue, and background. We applied Explain‑
able AI techniques, namely Grad‑CAM and HR‑CAM, to both networks and explored important features that contrib‑
uted to their decisions.

Results The classification network achieved an accuracy of 89.9% on previously unseen data. Our segmentation 
network achieved a class‑averaged Intersection over Union score of 0.690, and 0.782 for tumor tissue in particular. 
Explainable AI methods demonstrated that both networks rely on features agreeing with the pathologist’s expert 
opinion.

Conclusion Our work suggests that CNNs can predict head and neck cancer with high accuracy. Especially if accom‑
panied by visual explanations, CNNs seem promising for assisting pathologists in the assessment of cancer sections.
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Introduction
Head and Neck Squamous Cell Carcinoma (HNSCC) 
is a malignancy that can develop in several regions, 
such as the oral cavity, pharynx, or larynx  [1]. World-
wide, HNSCC was the seventh most common cancer 
in 2020  [2]. HNSCC patients have a poor prognosis, 
and their disease is often diagnosed in an advanced 
stage  [1]. Although the 5-year survival has improved 
over the last decades  [1], it is still very low, ranging 
between 25% and 60% [3].

HNSCC is diagnosed by pathologists who assess tis-
sue sections and provide important information for 
treatment choice and prognosis. Thin tissue slices are 
stained and evaluated using light microscopes, but 
recently can also be digitally analyzed as Whole Slide 
Images (WSIs). As WSIs are high-quality imaging data, 
many computer vision algorithms are being developed 
to reduce the workload of pathologists and improve the 
accuracy of the diagnosis.

Artificial Intelligence (AI) has seen a lot of attention 
recently, also in the medical field. Especially Convolu-
tional Neural Networks (CNNs) have shown remark-
able performance in the analysis of medical images, 
including WSIs  [4]. However, translating AI systems 
into clinical practice remains difficult due to their 
black-box nature. Algorithms applied in the diagno-
sis of cancer need to be very reliable and trustwor-
thy. Explainable AI methods can be used to tackle this 
problem and improve the transparency of neural net-
works, for example by offering visual explanations of 
predictions  [5]. Explainable AI techniques help both 

developers and physicians to better understand AI 
algorithms, their abilities, and their limitations [6].

We aimed to investigate the ability of CNNs to classify 
and semantically segment head and neck cancer tissue. 
To this end, we manually annotated tissue in the WSIs in 
two distinct classes, namely tumor and non-tumor, and 
applied state-of-the-art CNNs. Additionally, we aimed 
to explore which features were responsible for both net-
works’ decisions, using the two Explainable AI methods 
Grad-CAM [7] and HR-CAM [8].

Methods
Data source
The histopathological slices were collected in the context 
of the CheckRad-CD8 trial [9, 10]. In this trial, a cancer 
treatment that consists of induction therapy followed 
by radioimmunotherapy was developed  [10]. Patients 
with locally advanced HNSCC of the oral cavity, oro-
pharynx, hypopharynx, or larynx were selected in eight 
clinical centers in Germany  [10]. Their diagnosis was 
confirmed by a biopsy of the primary tumor. The patients 
first received induction chemoimmunotherapy with 
double checkpoint blockade. Based on their response, 
determined by the increase of the intratumoral CD8+ 
cells, patients were selected for subsequent radioimmu-
notherapy [10]. The dataset used in this work consists of 
tissue sections resulting from the pre-therapeutic biop-
sies of 101 patients. One slide per patient was used. The 
slides were stained using hematoxylin and eosin (HE) and 
digitized as WSIs. Out of 57 patients with oropharyn-
geal cancer, 30 were HPV-related as determined by p16 
expression. Patient characteristics are shown in Fig. 1.

Fig. 1 Characteristics of 101 head and neck cancer patients from the CheckRad‑CD8 trial. Tumor stages are given according to the UICC TNM 
eighth edition. Grade “Other” denotes patients with HPV‑positive oropharyngeal tumor or missing tumor grade. TNM = tumor‑node‑metastasis
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Data annotation
All 101 WSIs were manually annotated with supervi-
sion by an experienced pathologist. Using QuPath  [11], 
an open-source software for whole-slide analysis, tissue 
regions were annotated in two distinct classes, namely 
tumor and non-tumor. The tumor class includes both 
tumor cells and surrounding tumor stroma. Tissues 
such as normal squamous epithelium, connective tissue, 
glands, muscle, and fat tissue were annotated as non-
tumor. White background, damaged tissue, and large 
regions of blood or necrosis were not annotated. Further-
more, artifacts such as tissue folds were excluded from 
the annotation.

Data preprocessing
WSIs have very high resolutions and are commonly 
divided into small square tiles that can be fed to a 
CNN  [12, 13]. The Python library PathML  [14] was 
used to extract non-overlapping tiles with at least 30% 
annotated pixels. In most slides, more tumor than non-
tumor tissue was present and some slides contained no 
non-tumor tissue. This resulted in a highly imbalanced 
class distribution. We decided to extract a maximum 
of 125 tumor and 500 non-tumor tiles from each slide, 
as depicted in Fig. 2. In this way, the majority class was 
undersampled and an overall balanced number of tiles 
per class was achieved  [15, p. 221].

Along with each tile, the corresponding annotations 
were extracted as binary masks. These masks were fur-
ther preprocessed for semantic segmentation, as shown 
in Fig.  2. Specifically, we added a background class for 
white background pixels and a fourth class for not anno-
tated tissue, in the following referred to as class “other”. 
The class “other” was added because some tiles contained 
tissue without any annotation, which should be separated 
from the background class. The resulting ground truth is 
a stack of four binary masks, where every pixel belongs to 
exactly one class. For the classification task, the class with 
the maximum pixel count was assigned to each tile.

Two important hyperparameters are the tile size, 
which is commonly between 10 and 250 µm in histopa-
thology  [14], and the input resolution, which affects the 
training speed and accuracy of CNNs. Tile size and reso-
lution influence each other. For example, the impact of 
varying resolution on the accuracy is greater if images 
contain more complex information [16]. Thus, both were 
determined using a grid search with iterated 5-fold cross-
validation  [17, p. 136] and chosen based on the average 
validation accuracy of the classification network. In the 
grid search, the sizes 99.6, 149.4, and 199.1 µm and reso-
lutions ranging from 64 to 512 pixels were considered.

Data augmentation has been shown to improve the 
generalization of CNNs trained on HE-stained histologi-
cal images with stain variability  [18]. Therefore, several 
transformations were randomly applied during training, 

Fig. 2 Summary of our data pre‑processing pipeline. Each pre‑therapeutic WSI was manually annotated. Next, we extracted square tiles 
from the anntoated tumor (red) and non‑tumor (green) regions. Based on the annotations, the ground truth masks for semantic segmentation 
and the class labels for classification were created
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including rotation, mirroring, and variations in hue, sat-
uration, brightness, and contrast. In the training of the 
classification network, blurring and additive gaussian 
noise were also applied. The Python library Albumen-
tations  [19] was used for transforming tiles and masks 
jointly. The pixel intensity was scaled to a range of 0 to 
1 and then standardized by subtracting the mean value 
and dividing by the standard deviation of the training 
data [15, p. 126].

Deep neural networks
The classification network is an EfficientNet-B0 [20] pre-
trained on ImageNet  [21]. We modified this architecture 
by adding a global average pooling layer, a dense layer 
with 1024 neurons, Dropout [22], and another dense layer 
on top. The final dense layer contains a single neuron 
using a sigmoid activation function. The segmentation 
network is based on a U-Net architecture [23]. We modi-
fied the architecture by replacing the default encoder 
with EfficientNet-B0 pre-trained on ImageNet [21]. Spe-
cifically, the encoder is composed of an input layer and 
seven blocks of EfficientNet-B0. The decoder consists of 
five decoder blocks and the output layer, a 1x1 convolu-
tional layer using a softmax activation. A decoder block 
applies upsampling, followed by two convolutions. Each 
decoder block is connected to an encoder block by a skip 
connection. The segmentation network is based on the 
U-Net architecture with EfficientNet-B0 backbone of the 
Segmentation Models library [24]. A similar architecture 
called Eff-Unet with EfficientNet-B7 encoder has been 
shown to outperform similar approaches [25].

Both networks were implemented and trained in 
Python using TensorFlow (version 2.8 with Keras 
API)  [26]. The classification network was trained using 
Adam optimizer  [27] to minimize the binary cross-
entropy loss. The learning rate was set to 10−5 and the 
batch size to 128. The segmentation network was trained 
using Adam optimizer  [27] with a learning rate of 10−4 . 
We chose to minimize the Jaccard loss function and 
set the batch size to 64. Additionally, we created two 

ensemble models. To this end, we converted the predic-
tions of the segmentation network to tile-level predic-
tions. This was implemented by treating the fraction of 
predicted tumor pixels as tumor probability. The first 
ensemble model simply averaged the predictions of both 
networks, which is also called voting. The second ensem-
ble model was a logistic regression model, which was 
trained on the predictions for the test data using iterated 
2-fold cross-validation.

Explainable AI
For establishing visual interpretability, we relied on two 
Explainable AI methods that are based on Class Activa-
tion Maps (CAMs) [5]. Both methods produce heatmaps, 
where patterns contributing most to a prediction are 
highlighted.

Gradient-weighted Class Activation Mapping (Grad-
CAM) involves computing the gradient of the class score 
with respect to feature maps of the final convolutional 
layer  [7]. These feature maps are weighted according to 
their importance for the predicted class score to pro-
duce a coarse localization map [7]. Grad-CAMs can also 
be created for segmentation networks by replacing the 
class score by a set of pixels in the output [28]. As recom-
mended by Vinogradova et al., we obtained feature maps 
from the bottleneck layer [28].

The second method is High-Resolution Class Acti-
vation Mapping (HR-CAM) which aggregates feature 
maps from multiple layers to create a high-resolution 
localization map [8]. To compute HR-CAMs, the clas-
sifier of a frozen CNN is removed, and feature maps 
are obtained from several convolutional layers. These 
feature maps are fed to global average pooling and a 
top dense layer, which is trained to minimize a cross-
entropy loss [8]. The heatmap is a weighted sum of the 
feature maps and the weights of the final dense layer. 
We obtained feature maps from several layers, as sum-
marized in Table 1. The HR-CAMs for both the classi-
fication and segmentation network were created in the 

Table 1 Names and output sizes of layers, from which feature maps were obtained. HR‑CAM uses feature maps from several layers, 
whereas Grad‑CAM only requires the last convolutional layer’s output. The layer names correspond to the original layer names of 
EfficientNet‑B0 [20]

Method Classification CNN layers Segmentation CNN layers Output size [px]

HR‑CAM block_3a_expand_activation block_3a_expand_activation 56×56

block_4a_expand_activation block_4a_expand_activation 28×28

block_6a_expand_activation block_6a_expand_activation 14×14

block_7a_expand_activation block_6d_expand_activation 7×7

Grad‑CAM top_activation block_7a_expand_activation 7×7
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same way. We re-trained both models to classify tiles 
containing at least 80% tumor or 80% non-tumor for 
50 epochs.

Results
Dataset compilation
First, we determined the ideal settings for train-
ing CNNs. To this extent, square tiles were extracted 
from the WSIs at 51× magnification with a pixel size 
of 194 nm. Using our grid search approach (see Meth-
ods), the highest score was reached using a tile size of 
199.1 µm (corresponding to 1024 original pixels) and 
resampled resolutions of 224 to 512 pixels. Therefore, 
we extracted tiles of size 199.1 µm and resized them 
to 224 pixels. The scores for different combinations of 
sizes and resolutions are shown in Additional file  1, 
Fig. S1. The 101 slides were split into three subsets. 70 
slides were used for training, 10 for validation, and 21 
for testing. In total, the dataset contained 20,195 tiles.

CNNs are suited to classify and segment head and neck 
cancer tissue
The networks were evaluated using a previously unseen 
test dataset of 21 patients. Figure  3 shows their per-
formance in terms of receiver operating characteris-
tic (ROC) curves and confusion matrices. For a better 
comparison of the two networks, the predictions of the 
segmentation network were converted to tile-level pre-
dictions (see Methods). The resulting ROC curves are 
shown in Fig. 3a, and the corresponding confusion matri-
ces in Fig. 3d and e. We found that the segmentation net-
work had higher sensitivity but was outperformed by the 
classification network regarding accuracy and area under 
the curve (AUC), as summarized in Table  2. The classi-
fication network achieved 89.9% and the segmentation 
network 85.9% accuracy on the test data.

The confusion matrix in Fig.  3f contains the original 
pixel-wise predictions of the segmentation network. It 
achieved a class-averaged Jaccard coefficient of 0.690, and 
0.782 for the tumor class in particular. Figure 3f shows that 
only 33% pixels of class “other” were correctly classified. 

Fig. 3 Performance of the classification and segmentation network on test data. a‑c Receiver operating characteristic (ROC) curves and area 
under the curve (AUC). a Comparison of both networks, where the segmentation network’s pixel‑level predictions were converted to tile‑level 
predictions. b Model ensemble using voting. c Model ensemble using logistic regression. d‑f Row‑normalized confusion matrices. d Classification 
network. e Segmentation network with tile‑level predictions. f Segmentation network with pixel‑level predictions
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This class contains pixels that were not manually anno-
tated. For example, it includes tissue edges due to impre-
cise annotations, or artifacts. However, it may also include 
some tumor or non-tumor tissue, which led to low scores. 
We next asked if combining the results of the classification 
and the semantic segmentation CNNs improves the pre-
diction accuracy. We found that neither of the two tested 
ensemble models, i.e. averaging the predictions or fitting 
a logistic regression decision function, outperformed the 
pure classification network, as shown in Fig. 3b-c.

Both networks yielded predictions for individual tiles. 
These need to be merged to visualize them for full WSIs. 
Our workflow for inference and visualization is illustrated 
in Additional file  1, Fig. S2. To reduce inference time, 
foreground detection was applied prior to tile extrac-
tion. Additionally, we imported predictions into QuPath 
to enable viewing the tissues and predictions jointly. Fig-
ure 4a shows three WSIs of the test dataset, followed by 
the manual annotation in Fig. 4b and corresponding pre-
dictions. To produce the colormaps in Fig. 4c, foreground 
detection was performed, and the resulting tiles were 
fed to the classification network. Additionally, the tumor 
probabilities were converted to binary class labels. The 
tumor probability map for all tiles, including background 
tiles, can be found in Additional file 1, Fig. S3. Figure 4d 
depicts the predictions of the segmentation network. 
In the segmentation maps, the class with the maximum 
probability was assigned to each pixel.

Class Activation Maps highlight pathological patterns
Grad-CAMs and HR-CAMs were computed for all tiles 
of the test dataset. We viewed samples of correct pre-
dictions to explore important patterns. First, we exam-
ined tiles that were correctly predicted as tumor by the 

classification network. The Grad-CAMs confirmed that 
the classifier focused strongly on present tumor cells 
instead of other surrounding tissue, as shown in Fig. 5a. 
HR-CAMs of tumor predictions led to the assumption 
that the presence of atypical cells was an important fea-
ture for the classification network. In some samples, a 
strong focus was on cells characterized by hyperchro-
matic nuclei that appear dark in the image. Other rel-
evant features might be the abnormal size or irregular 
shape of the nucleus. These characteristics are also the 
key features in the decision-making process for patholo-
gists. Examples, where such atypical cells are highlighted, 
are shown in Fig.  5b. We found that mitotic figures did 
not seem to be a relevant feature for tumor prediction, 
although it is a characteristic that pathologists often 
consider.

Additionally, we looked at the correct predictions of 
non-tumor samples. The Grad-CAMs appeared to be 
rather difficult to interpret because it was not clear why 
specific regions were highlighted. However, the HR-
CAMs revealed that neighboring epithelial nuclei, often 
forming a structured pattern, are an important feature 
for the classification network. This is shown in Fig. 5c.

We found that Grad-CAMs and HR-CAMs highlighted 
similar patterns, with a mode correlation of 70.00% 
for the classification network. The mode correlation of 
36.67% for the segmentation network was much lower. 
The corresponding distributions of the Pearson corre-
lation coefficient can be found in Additional file  1, Fig. 
S4. To investigate whether decisions of the classification 
and the segmentation network were based on similar 
features, the correlation of their CAMs was also com-
puted. We found that CAMs generated for the two dis-
tinct networks had a low correlation. In many cases, they 
focused on different image regions. The mode correlation 
of Grad-CAMs was 23.33%. HR-CAMs showed a higher 
mode correlation of 56.67%.

Figure  6 demonstrates the decision-making process as 
highlighted by Grad-CAM, and why we found different 
class predictions across the networks. For example, the 
tile in the first column shows carcinoma. The segmenta-
tion network predicted 65% tumor pixels based on pre-
sent tumor cells. In contrast, the classification network 
predicted non-tumor because it focused on a region of 
cells that closely resemble healthy epithelial cells. The 
example in the second column in Fig. 6 was classified as 
non-tumor because of the presence of a blood vessel, but 
the segmentation network detected cancer cells in the tile.

Discussion
In this work, we created a manually annotated data-
set from HE-stained slides of locally advanced HNSCC 
and trained CNNs for classification and semantic 

Table 2 Quantitative performance evaluation of both networks 
and two model ensembles. The segmentation networks’ 
predictions were converted to tile‑level predictions in advance 
for better comparison. All performance metrics were computed 
for the full test dataset, except for ensemble logistic regression, 
where the mean values were obtained using iterated 2‑fold 
cross‑validation

Accuracy AUC Sensitivity Specificity

Classification network 89.9% 0.963 89.8% 90.0%

Segmentation network 85.9% 0.921 93.6% 85.4%

Ensemble averaging 87.1% 0.959 86.4% 87.8%

Ensemble logistic regres‑
sion

89.7% 0.960 91.1% 90.0%
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segmentation. Both networks achieved a comparable 
performance as well as a high accuracy on unseen data, 
demonstrating their suitability for the detection of head 
and neck cancer.

The techniques Grad-CAM and HR-CAM were used to 
create visual explanations. The CAMs showed that both 
networks learned pathological patterns. For example, the 
presence of atypical cells with features such as irregular 
shapes or hyperchromatic, enlarged nuclei seemed to be 
important. Previously, Grad-CAM has shown that nuclear 
features contributed most to predictions of head and neck 
cancer  [29] or to predictions of molecular subtypes of 
muscle-invasive bladder cancer [30]. These features agree 
with features used by expert pathologists, although they 
consider more characteristics such as the tissue struc-
ture or the number of mitoses, and take additional infor-
mation into account, such as overall tumor morphology, 
growth patterns, and tumor architecture. Integrating the 

detection of such features for model training could be 
considered, for example, to enable cancer subtyping.

The reliability and meaningfulness of explanations cre-
ated for the classification network were highlighted by a 
high correlation between Grad-CAMs and HR-CAMs. 
We found that the classification network and the seg-
mentation network learned partly overlapping, but yet 
distinct patterns with a low overall correlation. This sug-
gests taking both architectures into account. We found 
that Explainable AI techniques were very useful for inves-
tigating wrong or differing predictions of the two net-
works. CAMs can not only help in model development 
but also assist pathologists in reviewing predictions, 
making it easier for them to understand the CNN’s abili-
ties and to detect errors [6]. Moreover, it has been shown 
that presenting Grad-CAMs as additional information 
along with WSIs can improve the classification accuracy 
of pathologists [30].

Fig. 4 Qualitative assessment of predictions for three WSIs of the test dataset. a WSIs. b Manual annotation. Not annotated tissue is shown in gray. c 
Predictions of the classification network, created by assigning class labels with a threshold of 0.5 and removing background tiles for better visibility. 
d Predictions of the segmentation network
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One limitation of our work results from coarse anno-
tations. Most WSIs contained large, connected regions 
of either tumor or non-tumor tissue. Thus, it was very 
rare that one tile contained both classes. The seg-
mentation network tended to classify most pixels in 
a tile either as tumor or non-tumor. This resulted in 

undesirable, tile-shaped class boundaries, as shown in 
Fig. 4d. Additionally, Halicek et al. recommend favoring 
a binary classification task in combination with such 
coarse annotations  [29]. Therefore, the classification 
network is more suitable than the segmentation net-
work to be trained on our dataset.

Fig. 5 Exemplary tiles of the test dataset with corresponding Grad‑CAMs and HR‑CAMs, generated for the classification network. The Grad‑CAMs 
(7× 7 pixels) were resized to 224×224 pixels. Values close to one indicate a high importance of the respective image region. a Tiles containing 
both tumor and surrounding tissue with Grad‑CAMs. b Tiles containing atypical cells with HR‑CAMs. c Tiles containing squamous epithelium 
with HR‑CAMs
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Tile-shaped class boundaries were also observed in 
multi-class breast cancer segmentation by Ho et al. who 
tackled this problem using multiple magnifications and 
precise annotations  [31]. We argue that our segmenta-
tion network could improve using a similar strategy. 
Moreover, we found that binary class labels were ambigu-
ous when both classes were present in a single tile. For 
example, the tile in the fifth column of Fig. 6 contained 
both cancer cells and squamous epithelium. This is a dis-
advantage of the binary classification approach. To avoid 
too coarse annotations and ambiguous labels, annotat-
ing individual cells should be considered, although this is 
more costly and time-consuming.

A second limitation is that both networks were not 
explicitly trained to distinguish tissues and artifacts. 
We observed that artifacts, such as written text or dust 
on the slide, were usually classified as non-tumor. How-
ever, some artifacts occurred as not annotated regions in 
the tiles, causing them to be labeled as class “other” by 
the segmentation network. This applied for tissue-fold 
artifacts and blood, for example. The left-most WSI in 
Fig.  4a contains blood, which is classified as “other” in 
Fig. 4d. An example of tissue-fold artifacts can be found 
in Additional file 1, Fig. S2. Still, we recommend applying 

a preceding artifact removal. Alternatively, artifacts could 
be annotated as an additional class for CNN training.

Another limitation relates to the use of HR-CAM for 
the segmentation network. HR-CAM relies on adding 
a global average pooling layer and a dense layer on top 
of the trained network [8]. The resulting model can only 
be trained for a classification task and not for semantic 
segmentation. Most likely, the resulting HR-CAMs high-
light features important for the classification task and are 
therefore biased. This influenced the correlation between 
HR-CAMs and other CAMs, and led to a skewed dis-
tribution of correlation values, as shown in Additional 
file 1, Fig. S2c-d. For explaining the predictions of a seg-
mentation network, Grad-CAM is more suitable than 
HR-CAM.

Conclusion
Our CNNs were able to detect head and neck cancer 
in unseen slides with high accuracy. This work contrib-
uted to the understanding of which features are learned 
from histological images, by comparing Grad-CAMs and 
HR-CAMs of the CNNs trained for different tasks. The 
Explainable AI techniques confirmed that the networks 

Fig. 6 Exemplary test tiles with a negative correlation between Grad‑CAMs generated for the classification network and segmentation network. 
For each pair of Grad‑CAMs, the Pearson correlation coefficient (Corr) was computed. For classification, the predicted tumor probability (p) 
and for segmentation, the fraction of predicted tumor pixels (p) is given. On the top, the binary ground truth labels, i.e. the predominant class 
in the tile based on the maximum pixel count, are shown
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predicted the tumor class based on present pathological 
patterns, possibly focusing on nuclear features of atypi-
cal cells. This is consistent with how pathologists analyze 
tissue. Thus, CNNs seem promising in assisting patholo-
gists in the assessment of cancer sections, especially in 
combination with visual explanations.

In the future, we will explore an alternative annotation 
strategy, namely annotating cell nuclei with a larger num-
ber of distinct classes. Future studies may also help to 
identify more nuclear features such as cell size, nucleoli, 
and cytoplasmic features in addition to the features we 
highlighted, to help identify cancer subtypes. Additional 
Explainable AI techniques such as occlusion experi-
ments  [32] or DeepLift  [33] could be applied to further 
study class-discriminative features.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13000‑ 023‑ 01407‑8.

Additional file 1: Figure S1. Mean validation accuracy for combinations 
of tile size and tile resolution, resulting from a grid search with iterated 
5‑fold cross‑validation. Tiles were extracted at 512 pixels (99.6 µm), 768 
pixels (149.4 µm), and 1024 pixels (199.1 µm), and then resized to different 
resolutions. Figure S2. Inference and visualization of predictions for an 
exemplary WSI in QuPath. (a) Classification map. (b) Segmentation map. 
(c), (d) and (e) Sections of both maps, superimposed on the image, in 
QuPath. Tumor is highlighted in red, non‑tumor in green and “other” in yel‑
low. Background tiles were omitted. Figure S3. Tumor probability map for 
three WSIs of the test dataset. (a) WSIs. (b) Manual annotation. (c) Tumor 
probability map, created from predictions of the classification network 
for all tiles, including background tiles. Figure S4. Correlation of CAMs 
of the two networks and using the two Explainable AI techniques. (a) 
Strong correlation between Grad‑CAMs and HR‑CAMs of the classification 
network. (b) Low correlation between Grad‑CAMs of the classification and 
segmentation network. (c) Moderate correlation between Grad‑CAMs and 
HR‑CAMs of the segmentation network. (d) Bimodal correlation between 
HR‑CAMs of the classification and segmentation network.
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