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Abstract

resistance in bladder tumor cells.

chemotherapy in such patients.

Background: Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the
world which is mainly observed among men. There is a declining mortality rates in developed countries. Although,
the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer
from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have
proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients
following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor
progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa.

Main body: In present review we summarized all of the IncRNAs and miRNAs associated with chemotherapeutic

Conclusions: This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which
can be useful to select a proper drug based on the IncRNA profiles of patients to reduce the cytotoxic effects of
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Background

Bladder cancer (BCa) is the ninth most frequent cancer
worldwide with an annual estimated 356,000 new cases
and 145,000 deaths [1]. It ranks the fourth common
cancer among males [2]. Many factors are involved in BCa
progression such as smoking, industrial carcinogens, and
familial history [3]. Approximately 10-20% of the patients
who experience recurrence are prone to develop the
muscle-invasive bladder cancer (MIBC) [4]. Although,
surgery is the main treatment option of non-invasive blad-
der cancer, a noticeable ratio of these patients experience
tumor relapse [3]. Non-muscle-invasive tumors can be
treated by transurethral resection followed by chemother-
apy or immunotherapy. Grade of tumor invasion is an
important factor for the treatment management in which
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low-grade tumors are treated with only resection, while
high-grade with relapse risk may require further resection
and bacille Calmette-Guérin (BCG) therapy [5]. Chemo-
therapy has been considered as an effective first-line treat-
ment for early BCa aiming to suppress cancer progression,
prevent recurrences, and enhance patients’ survival [6].
However, BCa is prone for the chemo resistance and
tumor relapse. Since, early detection can significantly
improve the survival rate, monitoring of the drug-
resistance progression can be helpful for early treatment
of recurrence [7]. A combine of chemo radiation and cyst-
ectomy, offers an efficient option with long-term survival
rates [8]. The methotrexate, vinblastine, doxorubicin, and
cisplatin combination therapy was associated with severe
side effects, while the Gemcitabine/cisplatin combination
is safe and efficient in BCa patients [9]. Cisplatin-based
chemotherapy is the common method, however it has not
any influence on overall survival following radical cystec-
tomy among high-risk cases [10]. Regarding the
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chemotherapeutic resistance, many patients are faced with
side effects without any efficient benefit. Genetic factors
are associated with drug resistance through regulation of
drug efflux, DNA repair, cell cycle, and apoptosis [11-13].
Non-coding RNAs (ncRNAs) are a class of RNAs in-
cluding long non-coding RNAs (IncRNA), micro
RNAs (miRNA), and circular RNAs (circRNA) which
are involved in post transcriptional regulation. Since,
the ncRNAs have an important role in drug response
of tumor cells [14—16], we have summarized all of
the reported ncRNAs which have been associated
with chemotherapeutic resistance in BCa for the first
time in the world (Table.1).

Main text

Long non coding RNAs

LncRNAs are key regulatory molecules involved in cell
proliferation, development, and oncogenesis that achieve
their roles through post-transcriptional regulation [54].
They have pivotal roles in transcriptional regulation
through functioning as molecular signals, sponges,
decoys, scaffolds, and enhancer RNAs [55, 56]. Drug
resistance in various malignancies can be attributed to
IncRNAs function as regulator of gene expression which
results in higher rate of tumor cell proliferation and
reduced apoptosis [57]. Cisplatin (DDP) has been used
among the first-line chemotherapy medications for high
grade and stage bladder tumor patients [58]. However, a
large fraction of BCa patients are resistant to cisplatin-
based chemotherapy [9, 59]. Sirtuin-1 (SIRT1) is a
NAD-dependent deacetylase that diminishes the tumor
suppressive effect of p53, thereby dampening the efficacy
of clinical radiotherapy and chemotherapy. Therefore,
SIRT1 inhibition results in tumor cells death through
p53 modulation and activation [60]. It has been reported
that there were significant decreased and increased levels
of miR-133b and MSTIP2 expressions in cisplatin-
resistant bladder tumor cell lines, respectively. MiR-133b
directly suppressed the SIRT1 expression. MST1P2/miR-
133b axis had an important role in cisplatin-resistance
of BCa through SIRT1/p53 pathway [17]. It has been
shown that there was overexpression of HIFIA-AS2 in
tissues and cell lines of BCa following the cisplatin treat-
ment which makes bladder tumor cells resistance to
cisplatin-triggered cell death. HIFIA-AS2 enhanced
survival of tumor cells by upregulating high-mobility
group Al (HMGA1), thereby limiting the transcriptional
function of p53 family. It was identified that inter-
action of p53 with HMGALI restricted their transcrip-
tional activity on proapoptotic BAX protein [18].
MiR-582-5p has tumor-suppressive functions and
reduces the tumor cell proliferation and migration via
targeting CDKI, FOXCI, and RAB27a [61-63]. ATG7
is implicated in the two ubiquitin-like systems and is
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essential for autophagy [64]. It has been reported that
the UCAI1 was up regulated in BCa. It acts as an
endogenous sponge to down regulate the miR-582-5p
which resulted in ATG7 over expression. UCAI is
important for the regulation of proliferation and inva-
sion of BCa cells through modulating UCAl-miR-
582-5p-ATG7-autophagy axis. As UCAI shRNA
markedly reduced the expression level of LRP, MRP1,
and GST, and significantly overexpressed TOPO-II, it
is hypothesized that knockdown of UCAI decreases
chemo resistance [19]. It has been observed that there
was GAS5 down regulation in bladder transitional cell
carcinoma which was associated with advance grade
and stage. GASS5 also increased doxorubicin-induced
apoptosis through BCL-2 suppression [20].

Drug efflux is also another mechanism of tumor drug
resistance that can be regulated by different IncRNAs
[65]. MALATI increases the expression levels of MRP1
an MDRI through STAT3, thereby is responsible for
inducing cisplatin-resistance in lung tumor cells [66]. It
has been shown that MALATI repression caused a
better response of BCa cells to chemotherapy and in-
creased cisplatin sensitivity. MALAT1 induced chemo
resistance through regulating miR-101-3p/VEGEC axis.
Bladder tumor tissue had higher level of MALATI
compared with normal margins [21]. Gastric carcin-
oma proliferation-enhancing transcript 1 (GHET1) is
a IncRNA involved in cisplatin resistance in gastric
cancer [67]. MRP1 is a member of ATP-binding
cassette (ABC) superfamily which regulates the intra-
cellular distribution of molecules and is also involved
in transport of different complexes across extra-and
intra-cellular membranes. Moreover, it confers resist-
ance to chemotherapeutic treatments in cancer cells
due to its ability of drugs efflux. It has been observed
that there was significant GHETI overexpression in
BCa, which was positively correlated with advance
tumor grade and muscle invasion. GHETI up regula-
tion was also associated with higher Gemcitabine-
chemo resistance in BCa cells. Moreover, GHETI up
regulated the MRP1 in BCa cells, which in turn
enhanced their Gemcitabine resistance [22]. Gemcita-
bine is a nucleotide analogue commonly used as the
first line anticancer drug therapy for many solid
tumors such as breast cancer, ovarian cancer, and
BCa [68, 69]. FOXD2-AS1 is significantly up regulated
in BCa, and via establishing a positive feedback loop
with AKT and E2F1 is contributed to increased pro-
gression and aggressiveness of bladder tumor cells
[70]. It has been shown that there was a dose-
dependent pattern of FOXD2-ASI overexpression in
gemcitabine resistant bladder tumor cells. Repression
of FOXD2-ASI1 expression resulted in lower levels of
ABCC3 protein, and down regulation of several genes
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Table 1 all of the ncRNAs associated with chemotherapeutic resistance in BCa

Study Year Gene Country Drug Results
Chen 2020 MST1P2, China  Cisplatin MST1P2/miR-133b axis had an important role in cisplatin-resistance of
[17] miR- bladder cancer through SIRT1/p53 pathway.
133b
Chen 2019 HIF1A-  China Cisplatin HIF1A-AS2 enhances survival of tumor cells by upregulating HMGAT.
[18] AS2
Wu [19] 2019 UCA1 China Rapamycin UCAT1 acts as an endogenous sponge to down regulate the miR-582-
5p which resulted in ATG7 over expression.
Zhang 2017 GAS5 China Doxorubicin GASS5 increased doxorubicin-induced apoptosis through BCL-2
[20] suppression.
Liu [21] 2019 MALAT1 China  Cisplatin MALATT induced chemo resistance through regulating miR-101-3p/
VEGFC axis.
Li[22] 2019 GHET1 China Gemcitabine GHET1 up regulated the MRP1.
An [23] 2018 FOXD2- China Gemcitabine FOXD2-AS1 indirectly targets the ABCC3 through miR-143 sponging.
AS1
Wang 2017 MiR-143  China Gemcitabine The miR-143 attenuated gemcitabine resistance via IGF-1R
[24] suppression.
Fan 2014 UCA1 China Cisplatin UCAT1 overexpression was contributed to upregulation of WNT6.
[25]
Pan 2016 UCA1 China Cisplatin, Gemcitabine UCAT1 activates miR-196a-5p via CREB which results in gemcitabine/
[26] cisplatin resistance.
Xie [27] 2017 TUGI China Doxorubicin TUGT knockdown decreased Dox resistance through restraining the
activity of Wnt/B-catenin pathway.
Xie [28] 2018 CDKN2B- China Gemcitabine CDKN2B-AS induced Gemcitabine-resistance via sponging Let-7.
AS
Zhuang 2017 LET China Gemcitabine TGFB1 promotes gemcitabine resistance through LncRNA-LET/NF90/
[29] miR-145 axis.
Li[30] 2019 DLEU1 China Cisplatin DLEUT up regulated the HS3ST3B1 via miR-99b suppression.
Zhao 2019 NEAT1.1  China Cisplatin NEAT1.1 was down regulated following cisplatin treatment.
[31]
Xiao 2018 MiR-22-  China Paclitaxel, Adriamycin, Epirubicin, MiR-22-3p enhanced resistance to chemotherapy in bladder tumor
[32] 3p hydroxycamptothecin, Cisplatin, and cells through suppressing NET1.
Gemcitabine
Deng 2015 MiR-27a  China Paclitaxel, Adriamycin, Cisplatin MiR-27a/RUNX-1 pathway has a key function in chemo-resistance.
[33]
Drayton 2014 MiR-27a UK Cisplatin MiR-27a deregulation induced cisplatin resistance in bladder cancer
[34] cells via up regulating SLC7A11.
Bu[35] 2014 MiR-101 China  Cisplatin MiR-101 regulates cisplatin sensitivity in bladder tumor cell lines via
targeting the COX-2.
Vinall 2012 MiR-34a USA Cisplatin MiR-34a sensitized tumor cells to cisplatin by targeting SIRT-1 and
[36] CDKe.
Li[371 2014 MiR-34a China Cisplatin MiR-34a targets CD44 after cisplatin therapy.
Liu [38] 2018 MiR-34a China Epirubicin MiR-34a significantly reduced Epirubicin chemo resistance in bladder
tumor cells through targeting TCF1 and LEF1.
Zhang 2017 MiR-34a  China Cisplatin, Gemcitabine MiR34a regulation of GOLPHS3 is active in bladder CSCs resistant to
[39] gemcitabine and cisplatin.
Tan 2019 MiR-34b- China Paclitaxel, Adriamycin, Epirubicin, MiR-34b-3p attenuated chemo resistance in bladder cancer through
[40] 3p Cisplatin, Pirarubicin suppressing CCND2 and P2RY1.
Luan 2018 MiR-98  China Cisplatin, Doxorubicin MiR-98 promotes chemo-resistance through targeting LASS2.
[41]
Li[42] 2019 MiR-101- China Cisplatin MiR-101-3p decreased cisplatin-resistance in bladder urothelial carcin
3p oma through repressing EZH2 and MRP1.
Cao 2018 MiR-129- China Gemcitabine MiR-129-5p inhibits resistance to gemcitabine in bladder cancer cells
[43] 5p and promotes their apoptosis via targeting WNT5a.
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Table 1 all of the ncRNAs associated with chemotherapeutic resistance in BCa (Continued)

Study Year Gene Country Drug Results
Lv [44] 2015 MR- China Pirarubicin, Paclitaxel, MiR-193a-3p mediated HOXC9 down regulation which resulted in
193a-3p Adriamycin, poorer sensitivity to chemotherapeutic drugs.
Epirubicin Hydrochloride, and
Cisplatin
Deng 2015 MiR- China Pirarubicin, Paclitaxel, Adriamycin, PSENT was directly targeted by miR-193a-3p and executed its impact on
[45] 193a-3p Epirubicin hydrochloride, and the multi-chemo resistance.
Cisplatin
Lin [46] 2017 MiR- Taiwan  Cisplatin CEBPD/miR-193b-3p axis had key roles in cisplatin response.
193b-3p
Deng 2014 MiR- China Paclitaxel, Adriamycin, Epirubicin MiR-193a-3p induced multi-drug resistance in bladder cancer cells
[47] 193a-3p Hydrochloride, and Cisplatin through down regulating LOXL4.
Lv [48] 2014 MR- China Pirarubicin hydrochloride, Paclitaxel, HIC2, SRSF2, and PLAU achieve their role in relaying miR-193a-3p’s
193a-3p Adriamycin, and Epirubicin effect on chemo resistance in bladder cancer through regulation of
hydrochloride Myc/Max, NF-jB, DNA damage response, and NOTCH pathway.
Shindo 2018 MiR- Japan Cisplatin TNFSF10, ICAM1, and IGFBP3 were induced in the resistant cells as a
[49] 200b result of miR-200b + cisplatin treatment.
Zhang 2015 MiR-203  China Cisplatin The miR-203 up regulation increased the cytotoxic effects of cisplatin
[50] and decreased tumor cell viability through suppressing Survivin and
BCL-w.
Liu [51] 2018 MiR-214  China Cisplatin MiR-214 decreased chemo resistance in bladder cancer tissues and cell
lines by suppressing NTN1.
Li[52] 2017 MiR-218 China  Cisplatin MiR-218 up regulation reduced cisplatin resistance through GLUT1
targeting.
Zeng 2016 MiR-222 China  Cisplatin MiR-222 up regulation decreased cisplatin-induced apoptosis in bladder
[53] tumor cells through modulation of PPP2R2A/Akt/mTOR pathway.

related to inducing drug resistance including MDRI,
MRP2, and LRP. Therefore, FOXD2-ASI regulated
gemcitabine-resistance in BCa cells. FOXD2-AS1
indirectly targets the ABCC3 through miR-143 spon-
ging [23]. Insulin-like growth factor-1 receptor (IGF-
1R) has pivotal role in cell survival, differentiation,
proliferation, and apoptosis inhibition [71]. IGF-1R
activates the PIBK/AKT signaling which is critical for
cell survival [72, 73]. MiR-143 wup regulation
suppresses tumor cells proliferation and migration,
and triggers apoptosis. It also increases the oxaliplatin
sensitivity of tumor cells through targeting IGF-1R
[74]. It has been reported that there was significant
decreased levels of miR-143 expression in bladder
tumor cell lines and tissue samples compared with
normal margins. There was an inverse association
between miR-143 and IGF-IR mRNA expression levels
which showed that the miR-143 exerts its tumor-
suppressive role through IGF-1R regulation. MiR-143
overexpression significantly inhibited the p-ERK and
p-AKT levels. It also attenuated the gemcitabine
resistance via IGF-1R suppression [24].

LnRNAs can also be associated with drug response
during tumor progression through regulation of different
signaling pathways [75]. Studies have confirmed the
association between up regulation of IncRNA urothelial
carcinoma associated 1 (UCA1) in bladder tumor tissue
with cell growth, invasion, and migration [76]. UCAI is

frequently up regulated in bladder malignancies and
contributed to aggressiveness of bladder tumor cells
[76]. WNT signaling is an important pathway during
embryogenesis and carcinogenesis [77, 78]. A significant
UCA1 up regulation has been shown in bladder tumor
tissues following cisplatin treatment. L/CA1 overexpres-
sion was also contributed to up regulation of WNT6 and
induction of WNT pathway which promotes cisplatin
resistance in tumor cells [25]. The WNT6 and SRPK1
are up regulated as a result of UCAI overexpression,
which leads to cisplatin resistance [25, 79]. UCAI
promotes epithelial-mesenchymal transition (EMT) and
activates mTOR and ERK pathways, and increases
Gefitinib resistance in EGFR-mutant lung carcinoma
[80]. It has been reported that the JCAI activates miR-
196a-5p via CREB which results in gemcitabine/cisplatin
resistance. UCA1 up regulation had a significant associ-
ation with diminished rate of apoptosis and higher cell
survival. UCAI promotes CREB phosphorylation
through AKT pathways. Therefore, UCAl-dependent
CREB activation was considered as a key step in miR-
196a-5p transcriptional regulation in bladder tumor cells
[26]. TUGI is an oncogenic IncRNA in various cancers
[81-86]. Doxorubicin (Dox) is an anthracycline anti-
biotic which induces cell cycle arrest and apoptosis
through induction of the double-strand breaks [87]. It
has been reported that the TUGI knockdown decreased
Dox resistance through restraining the activity of Wnt/
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B-catenin pathway; whereas, TUGI up regulation was
significantly associated with Dox resistance and poor
prognosis [27]. CDKN2B-AS is an oncogenic IncRNA in
various cancers [88-90]. Gemcitabine is a deoxycytidine
analogue with anticancer function, which is used as the
first-line chemotherapeutic medication against bladder
urothelial carcinoma. It is metabolized and activated by
cytidine deaminase and deoxycytosine kinase, respect-
ively. It disrupts the replication of DNA, causes cell cycle
arrest at G1/S stage, and promotes apoptosis [91]. It has
been reported that there was up regulation of CDKN2B-
AS in bladder urothelial carcinoma tissues and cell line
which was positively associated with advance tumor
grade. CDKN2B-AS up regulation was also correlated
with Gemcitabine chemo resistance in BCa patients.
Suppression of CDKN2B-AS attenuated the Gemcitabine-
resistance in 24/Gem cells through inactivation of WNT
signaling pathway. Therefore, CDKN2B-AS induced
Gemcitabine-resistance via sponging Let-7 for activating
WNT signaling pathway [28]. Although, anti-neoplastic
chemotherapeutic drugs like gemcitabine at first show
beneficial effects in almost all patients, a noticeable ratio
of patients experience recurrences following resistance.
TGFpB1 is a cytokine involved in EMT and self-renewal
[92]. NF90 is also a RNA binding protein with critical
roles in RNA processing, localization, turnover, and tran-
scriptional stability of HIF-Ia, IL-2, and VEGF [93-96].
The up regulation of CSC markers such as CK14,
CK5, and CD44 indicated that the BCa stemness is
stimulated during chemotherapy. TGFS1 was overex-
pressed following Gemcitabine treatment. Moreover,
aberrant expression of IncRNA-LET/NF90/miR-145
pathway was mediated by TGFP1 which eventually
increased stemness and chemo resistance. KLF4 and
HMGA2 as the miR-145 targets were responsible for
miR-145 suppressive effect against the stemness of
BCa cell [29].

The DLEUI is an IncRNA associated with tumor cell
aggressiveness and migration [97-100]. It has been shown
that there were higher levels of DLEUI expressions in
bladder tumor tissues compared with normal margins.
DLEUI1 up regulation was also associated with worse
prognosis in BCa patients. Moreover, up regulation of
DLEUI1 enhanced tumor growth and aggressiveness and
induced cisplatin resistance through HS3ST3B1 induction.
DLEUI up regulated the HS3ST3B1 via miR-99b suppres-
sion. Overexpression of HS3ST3B1 was significantly cor-
related with shorter survival rates in BCa patients.
Furthermore, ectopic HS3ST3B1 expression enhanced
tumor growth, invasiveness, and cisplatin resistance [30].
NEATI is an oncogenic IncRNA in various cancers and
promotes the cell proliferation, migration, and aggressive-
ness through regulation of various miRNAs. Some studies
have demonstrated that NEATI attenuates cisplatin
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chemo resistance [101, 102], while other studies showed
the NEATI as inducer of cisplatin resistance [103, 104]. It
has been demonstrated that the NEATI.1 was down regu-
lated following cisplatin treatment in BCa cells. The p53,
OCT4, and c-MYC regulated the expression level of
NEATI through interacting with its promoter region.
There were OCT4, ¢-MYC, and p53 up regulations in
cisplatin-resistant BCa cells. The knockdown of NEAT1
suppressed the proliferation and migration of BCa cells
and induced apoptosis following cisplatin treatment [31].

MicroRNA-22-3p and 27a

Neuroepithelial cell transforming 1 (NET1) is a guanine
nucleotide exchange factor for RhoA and is involved in
regulating extracellular signal transduction. It has been
observed that the miR-22-3p enhanced resistance to
chemotherapy in bladder tumor cells through suppress-
ing NET1. NET1 was also markedly up regulated in
5637 cell line compared with H-bc cell line. Moreover,
there was an inverse association between NETI and
miR-22-3p expression levels. NET1 was introduced as
the direct target of miR-22-3p in chemo resistance of
bladder tumor cells [32]. MiR-27a down regulation in
bladder tumors can be associated with reduced chemo-
therapeutic response [34, 105-107].

RUNX-1 is a direct target for inducing tumor chemo-
sensitivity using miR-27a. The findings have shown a
significant correlation between miR-27a overexpression
and improved chemotherapeutic outcomes. The carriers
of rs11671784 A allele had significantly poorer outcomes
after chemotherapy compared with rs11671784 GG
homozygote patients. It was also indicated that the miR-
27a significantly down regulated the P-glycoprotein
[108]. It has been reported that the miR-27a up regula-
tion was significantly associated with overexpression of
CASP3 and BAX, and BCL-2 down regulation. MiR-27a
decreased tumor cells’ resistance to chemotherapy by
increased rate of apoptosis. There was a correlation
between rs11671784 G/A variation and reduced miR-
27a expression which results in increased RUNX-1
expression drug resistance. RUNX-1 up regulation was
significantly correlated with reduced bladder tumor drug
sensitivity. Therefore, miR-27a/RUNX-1 pathway has a
key function in chemo-resistance in bladder malignan-
cies [33]. Many solid tumors display resistance towards
cisplatin mainly due to sequestration, reduced uptake,
and increased drug efflux. Sequestration of cisplatin is
accomplished by a variety of substances such as glutathi-
one (GSH) as an efficient electron donor involved in
detoxification of xenobiotics [109]. Glutathione shows
antagonistic effect against cytotoxicity of radiotherapy
and chemo therapeutic medication [110]. Glutamate-
cysteine ligase catalyzes the first step of GSH synthesis
that is regulated by the availability of cystine at both
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transcription and translation levels [111]. Heterodimeric
xc- cystine-glutamate transporter is an antiporter which
simultaneously exports glutamate and imports cystine
[112], and is consisted of SLC3A2 and SLC7A11. It has
been observed that the miR-27a deregulation induced
cisplatin resistance in BCa cells via up regulating
SLC7A11, followed by increased cystine import and
higher intracellular glutathione levels. The results sug-
gested that the miR-27a/27b and SLC7AI11 expression
levels along with intracellular glutathione levels in BCa
tissue could be considered as predictive factor for deter-
mining the probability of cisplatin-chemo resistance.
Patients with down regulated SLC7A11 showed better
response to therapy and had better prognosis [34]. Cy-
clooxygenase-2 (COX-2) is an important mediator for
the synthesis of inflammatory prostaglandins and is
involved in tumor invasion, angiogenesis, and drug re-
sistance [113, 114]. There is a negative correlation be-
tween miR-101 and COX-2 expressions in which miR-
101 up regulation reduces cisplatin-chemo resistance
through COX-2 inhibition [115]. It has been shown
that there was a significant decreased expression of
miR-101 in BCa cells resistant to cisplatin. Therefore,
miR-101 regulates cisplatin sensitivity in bladder
tumor cell lines via targeting the COX-2 [35].

MicroRNA-34a and 98

MiR-34a is a potential tumor suppressor miRNA and its
down regulation has been reported in various malignan-
cies [116]. Dysregulated miR-34a has been associated
with resistance to chemotherapeutic drugs [36, 117—
120]. This might be due to the modulating impact of
miR-34a on p53 signaling pathway. Ectopic expression
of miR-34a caused apoptosis, cell cycle arrest, and drug
response alteration through SIRT-1, CDK6, E2F3, and
BCL-2 targeting [121-123]. CD44 is considered as the
marker of chemo-resistant bladder CSCs [124—126]. It
has been reported that there was a correlation between
miR-34a up regulation and cisplatin sensitivity in BCa.
Moreover, miR-34a targets CD44 after cisplatin therapy
[37]. It has been reported that up regulation of miR-34a
significantly reduced Epirubicin chemo resistance in
bladder tumor cells through targeting TCFI and LEFI.
Therefore, miR-34a up regulation leads to the suppres-
sion of WNT signaling pathway while increasing the rate
of epirubicin -induced apoptosis [38]. Golgi phosphopro-
tein 3 (GOLPH3) is involved in Golgi trafficking [127].
GOLPH3 deregulation is associated with poor prognosis
in BCa [128]. It has been reported that there was a sig-
nificant reduced miR-34a expression in gemcitabine-
resistant BCa cells. MiR-34a reduced the stemness of
chemo resistant BCa cells and increased gemcitabine
and cisplatin responses. GOLPH3 was also significantly
over expressed in BCa cells, xenograft, and sphere cells
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resistant to gemcitabine and cisplatin. Moreover, the up
regulation of CSC biomarkers including KLF4, SOX2,
and CD44 were observed in bladder tumor cells and
xenograft. Therefore, miR-34a regulation of GOLPH3 is
active in bladder CSCs resistant to gemcitabine and
cisplatin [39]. Aberrant p53/Rb signaling pathway is cor-
related with increased tumor invasiveness and growth in
muscle invasive BCa [129-131]. The expression levels of
components of this pathway are important in predicting
the clinical outcome of the chemotherapy. E2Fs as
downstream effectors of Rb, and CDK6 as regulator of
Rb phosphorylation are directly targeted by miR-34a.
MiR-34a enhances apoptosis rate through suppressing
BCL-2 expression. CDK6 interacts with CDK4 and
CCND1 to form a complex which is fundamental for Rb
function and G1/S transition. SIRT-1 is a NAD-
dependent deacetylase which targets FOXO, SFRP1, p53,
and PGC1 [132-134]. It has been reported that the miR-
34a sensitized tumor cells to cisplatin by targeting SIRT-
1 and CDK6. The MI-TCC patients resistant toward
cisplatin chemotherapy had significantly lower levels of
miR-34a expression compared with sensitive patients
[36]. Cyclin is critical for the regulation of cyclin-
dependent kinase (CDK) activity. Cyclin D-CDK4/6
complex has a critical role during transition from G1 to S
phase [135, 136]. The P2RY1 is a member of G-protein-
coupled receptors family which is a receptor for extracel-
lular ADP [137, 138]. Binding of ADP to P2RY1 mobilizes
intracellular calcium through activation of phospholipase
C, which results in platelet shape change and aggregation
[139, 140]. It has been reported that the miR-34b-3p
attenuated chemo resistance in BCa through suppressing
CCND2 and P2RY1 [40].

MiR-98 was recognized as an important agent in regu-
lating mitochondrial activity, which increases bladder
tumor cells resistance toward mitochondrial apoptosis. It
was also established that miR-98 targets LASS2 tumor
suppressor. There was also an inverse association
between miR-98 and LASS2 mRNA levels in bladder
tumors. LASS2 functions in negative regulation of mito-
chondrial activity and has a putative role in mediating
chemo-resistance caused by miR-98. Therefore, miR-98
promotes chemo-resistance through targeting LASS2,
which enhances mitochondrial fusion and disrupts mito-
chondrial membrane potential [41].

MicroRNA-101, 129-5p, and 193a-3p

MiR-101-3p is considered as a tumor suppressor and is
down regulated in different malignancies such as BCa,
colorectal cancer, and breast cancer [141-144]. EZH2 as
a target of miR-101-3p is a member of the Polycomb-
group family involved in transcriptional repression [145].
MRP1 is a member of ATP-binding cassette (ABC)
transporters which transport different molecules across
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intra- and extra-cellular membranes. It induces chemo
resistance via exporting chemotherapeutic medications
before they exert their antineoplastic effects [146—148].
It has been reported that there were miR-101-3p down
regulations in bladder urothelial carcinoma tissues and
cell lines resistant to cisplatin. MiR-101-3p overexpres-
sion also suppressed the MRP1 expression level.
Therefore, miR-101-3p decreased cisplatin-resistance in
bladder urothelial carcinoma through repressing EZH2
and MRP1 [42]. Gemcitabine is a deoxycytidine analogue
which disrupts DNA synthesis, induces replication-
associated DNA double-strand breaks, and triggers
apoptosis in cancer cells. Gemcitabine is effective in
improving overall survival (OS) in metastatic BCa
patients [149].

NOTCH signaling pathway has a pivotal role in
various cellular processes such as cell cycle, migration,
metabolism, and apoptosis [150, 151]. MiR-129-5p is
involved in tumor cells drug response via modulation of
NOTCH signaling receptor DLK1 [152]. WNT5a is also
a member of WNT ligand family, which has critical role
is regulation of cell proliferation and migration [24].
WNT5a increases the GSK-3-independent degradation
of B-catenin [153—155]. Some studies have revealed that
WNT5a induces resistance to chemotherapy via up
regulating ABCB1 [156] and inducing PI3K/AKT signal-
ing pathway [157]. It has been reported that lower levels
of miR-129-5p was correlated with lower sensitivity of
BCa cells to gemcitabine therapy; however, overexpres-
sion of miR-129-5p inhibits resistance to gemcitabine in
BCa cells and promotes their apoptosis via targeting
WNT5a [43].

Substantial epigenetic changes along with genetic vari-
ations are the origin of all cancerous features [158].
These epigenetic changes and defects have a more
significant impact on tumor cells phenotype and
gene expression than genetic changes. Detection of
aberrant DNA methylation at promoter sequence of
oncogene and tumor suppressor genes is an efficient
method of early diagnosis [159-161]. MiR-193a-3p
impedes tumor proliferation and decreases drug
resistance through down regulation of various genes
such as CCNDI1, ERBB4, and PTEN [162, 163].
HOXC9 belongs to highly conserved homeobox fam-
ily of genes, and encodes proteins that function as
homeodomain transcription factors playing a crucial
role in morphogenesis in all multicellular organisms.
It has been revealed that the miR-193a-3p mediated
HOXC9 down regulation which resulted in poorer
sensitivity of BCa to chemotherapeutic drugs. Oxida-
tive stress and DNA damage response were also
influenced by epigenetic suppression of HOXC9
through miR-193a-3p [44]. Presenilin (PSEN1) is a
catalytic element of the y-secretase complex that
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performs intramembrane cleavage of numerous pro-
tein substrates leading to activation of the NOTCH
pathway [164]. Studies have shown the positive
impact of PSEN1 on overexpression of ABCC1/
MRP1 via NOTCH signaling [165]. It has been
reported that the PSENI was directly targeted by
miR-193a-3p and executed its impact on the multi-
chemo resistance. PSEN1 up regulation rendered H-
bc cells more sensitive to chemotherapy-induced cell
death. However, RNA interference-mediated repres-
sion of PSEN1 gene resulted in lower rates of
apoptosis and desensitizing 5637 cell line to
chemotherapy-induced cell death [45]. Platinum
compounds are frequently used for treatment of
various malignancies by forming bifunctional DNA
adducts which results in transcriptional suppression
and apoptosis induction [46]. C/EBP is a family of
transcription factors with pivotal roles in regulation
of cellular differentiation, proliferation, and apoptosis
[166-168]. CEBPD is also involved in genomic sta-
bility through transcriptional modulation of DNA
damage response proteins. It was observed that
CEBPD and cisplatin increased the expression levels
of miR-193b-3p. Moreover, miR-193b-3p had regula-
tory effect on ETS1 and CCNDI1. MiR-193b-3p was
also important for CDDP-triggered cell cycle arrest,
cell cytotoxicity, and inhibition of cellular migration.
CEBPD/miR-193b-3p axis had key roles in cisplatin
response of urothelial carcinoma cells in which
CEBPD up regulates the miR-193b-3p and improved
cisplatin cytotoxicity in urothelial carcinoma. This
process was associated with ETS1 and CCND1 down
regulations, cell migration inhibition, cell cycle ar-
rest, and cisplatin-triggered cytotoxicity in NTUBI1
cell line [46]. The oncogenic function of miR-193a-
3p is due to its suppressive effects on various genes
such as KRAS and c¢-KIT [169, 170]. Lysyl oxidase
homolog 4 (LOXL4) is a member of the lysyl oxidase
family which is necessary for the biogenesis of con-
nective tissue by formation of crosslinks between
collagens and elastin fibers. It has been indicated
that the miR-193a-3p induced multi-drug resistance
in BCa cells through down regulating LOXL4, and
thus initiating oxidative stress pathway [47]. Hyper-
methylation of the promoter and enhancer regions
are associated with epigenetically silenced status of
ncRNAs and protein-coding genes. The PLAU
encodes the urokinase-type plasminogen-activator
protein, a serine protease which has key functions in
degradation of extracellular matrix during tumor
progression and metastasis. The HIC2 is a transcrip-
tion factor involved in systemic lupus erythematosus
[171] and digeorge syndrome [172]. SRSF2 belongs
to the serine/arginine-rich family of pre-mRNA



Zangouei et al. Diagnostic Pathology (2020) 15:136

splicing factors [173]. HIC2 interacts with CCNT1 to
positively regulate MYC/Max pathway [174, 175]. It
has been reported that the HIC2, SRSF2, and PLAU
achieve their role in relaying miR-193a-3p’s effect on
chemo resistance in BCa through regulation of Myc/
Max, NF-jB, DNA damage response, and NOTCH
pathway [48].

MicroRNA-200b, 203, 214, 218, and 222

Members of miR-200 family are potent inhibitors of
EMT through inhibiting the expression of ZEB1 and
ZEB2 [176, 177]. IGFBP3 is an important mediator of
insulin growth factor (IGF) signaling pathway. IGF1
shows higher affinity for interaction with IGFBP3 than
its specific receptor (IGF1R), thereby IGF1’s binding to
IGFBP3 interrupts accurate interaction between IGF1
and IGF1R, dampening the anti-apoptotic functions of
IGF1 [178]. TNESF10 belongs to the TNF superfamily
and promotes the apoptosis of tumor cells through acti-
vation of death receptors [179]. It has been reported that
there was a correlation between epigenetic silencing of
miR-200b and cisplatin resistance in BCa. Microarray
analysis showed that genes associated with CDDP sensi-
tivity or cytotoxicity, such as TNFSF10, ICAM1, and
IGFBP3 were induced in the resistant cells as a result of
miR-200b/cisplatin treatment [49].

Although, Cisplatin is the main drug in BCa combin-
ation chemotherapy regimens including GC (gemcita-
bine and cisplatin) and MVAC (methotrexate,
vinblastine, doxorubicin, and cisplatin), almost half of
the MIBC patients do not respond to the cisplatin-based
treatment [180]. BCL-w exerts its anti-apoptotic effects
through regulation of the intrinsic apoptotic pathway
[181]. Anti-apoptotic activity of survivin is accomplished
through blocking the caspases in a complex with XIAP
[182]. It has been reported that there was a correlation
between miR-203 down regulation and poor prognosis
in BCa patients who were under cisplatin-based chemo-
therapy. MiR-203 up regulation also increased the
cytotoxic effects of cisplatin and decreased tumor cell
viability through suppressing Survivin and BCL-w.
Patients with non-progressive form of BCa had notably
higher levels of miR-203 compared with cases with
progressive form [50].

MiR-214 functions as a tumor suppressor agent and is
deregulated in various cancers [183—186]. Down regulation
of miR-214 occurs in BCa which shows marked correlation
with higher tumor grade/stage and lymph nodes involve-
ment [187]. MiR-214 down regulates the P53 and PDRG1 in
BCa [187]. It has been revealed that there was a significant
decreased level of miR-214 expression in BCa tissues and cell
lines. The miR-214 attenuated chemo resistance through
apoptosis induction. It was able to down regulate the PARP
and CASP-3 levels. It also inhibited AKT phosphorylation.
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AKT signaling pathways regulates chemotherapy-induced
apoptosis via BCL-2 up regulation. Therefore, the impact of
miR-214 on drug resistance is mediated through its modula-
tory function in AKT/BCL-2 axis. The miR-214 decreased
chemo resistance in BCa tissues and cell lines by suppressing
NTN1 [51].

Cisplatin mainly functions through induction of oxida-
tive stress [188]. Nevertheless, a large fraction of tumors
develop cisplatin chemo resistance through reducing
drug uptake, increasing drug efflux, inactivating ROS,
and increasing the intracellular level of GSH [189].
GLUT1 is a uniporter facilitating the transport of
glucose across the plasma membrane and mediates
glycolytic flux in cells [190]. It has been reported
that the miR-218 up regulation markedly decreased
glucose uptake through GLUT1 targeting. Over
expression of miR-218 was also beneficial in attenu-
ating cisplatin resistance in BCa cells [52].

Aberrant expression of miR-222 enhances tumor cell pro-
liferation and metastasis by inhibiting the PPP2R2A, TIMP3,
and p27 [191-193]. MiR-222 expression has been linked to
the tumor drug response [194]. PP2A is regarded as a master
regulator of cell cycle and is also involved in the regulation
of protein synthesis, apoptosis, and stress responses [191,
195-197]. It has been reported that the miR-222 up regula-
tion increased cell proliferation and decreased cisplatin-
induced apoptosis in bladder tumor cells through modula-
tion of PPP2R2A/AKT/mTOR pathway. Tumor cells with
high levels of miR-222 had activated AKT/mTOR axis. The
mTOR or AKT suppression were also beneficial in inhibiting
tumor cells’ proliferation and restoring cisplatin sensitivity
due to miR-222 up regulation [53].

Conclusions

Regarding the importance of ncRNAs in regulation of
drug response in tumor cells, in present review we have
summarized all of the reported ncRNAs which are asso-
ciated with chemotherapeutic resistance in BCa. It was
observed that the IncRNAs were the most reported
ncRNAs associated with drug response of BCa. This
review paves the way of introducing a prognostic panel
of ncRNAs for the BCa patients to improve the selection
of an efficient chemotherapeutic strategy based on
ncRNA profile of BCa patients.
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